

ALPHA X SERIES TOTAL STATION

Instruction Manual

GUANGZHOU ALPHA GEO-INFO CO.LTD

Foreword

Thanks for purchasing the ALPHA X series total station. In order to use the instrument well, please read this instruction manual carefully and keep it cautiously for consulting in the further.

Product confirmation:

Please fill the model and the serial number of your instrument in corresponding blank. Feedback to local distributor or our sales department.

NOTE :

•Please read this instruction manual carefully before use it.

•Avoiding insolates the instrument, and don't collimate the sun directly for protecting eyes and instrument.

•When using it please insure the connection between tripod and instrument is firm. If raining, you can hood it with rainproof cover. •Please loose the clamp system when the instrument in the case, and keep the case dry.

•When transporting, keep the instrument in the case and try your best to lighten librations.

•After working in wet or raining condition, please wipe water on surface and keep it in air, when it is dry completely, you can put it in the case.

•Don't clean the instrument surface with alcohol, aether or other irritant chemical things; and use the equipped paper to clean the optical parts.

•If you do not use the instrument for a long time, you should take the battery pack down and recharge once every month.

• If you do not use the instrument for a long time, take the instrument out of the case and keep it in the dry condition.

•If the temperature changing is sharp (for example: move it out from one hot vehicle), the measured data will be influenced, so it can be used when it adapts the surrounding condition.

Before use it, you should check the voltage for whether it is enough.Do not remove the battery at working time, otherwise some settings or measured data may be lost.

Safety Cautions:

•There is a risk of fire, electric shock or physical harm if you attempt to disassemble or repair the instrument yourself.

This is only to be carried out by ALPHAGEO or an authorized dealer, only!

•Cause eye injury or blindness.

Do not look at the sun through a telescope.

•Laser beams can be dangerous, and can cause eye injury if used incorrectly.

Never attempt to repair the instrument yourself.

•Cause eye injury or blindness.

Do not stare into laser beam.

•High temperature may cause fire.

Do not cover the charger while it is charging.

•Risk of fire or electric shock.

Do not use damaged power cable, plug and socket.

• Risk of fire or electric shock.

Do not use a wet battery or charger.

• May ignite explosively.

Never use an instrument near flammable gas, liquid matter, and do not use in a coal mine.

• Battery can cause explosion or injury.

Do not dispose in fire or heat.

• Risk of fire or electric shock.

Do not use any other type of charger other than the one specified.

• Risk of fire.

Do not use any other power cable other than the one specified.

• The short circuit of a battery can cause a fire.

CAUTION!

•Do not connect or disconnect equipment with wet hands, you are at risk of electric shocks if you do!

•Risk of injury by overturn the carrying case.

Do not stand or sit on the carrying cases.

•Please note that the tips of tripod can be hazardous, be aware of this when setting up or carrying the tripod.

•Risk of injury by falling down the instrument or case.

Do not use a carrying case with a damaged which belts, grips or latches.

•Do not allow skin or clothing to come into contact with acid from the batteries, if this does occur then wash off with copious amounts of water and seek medical advice.

•Ensure that you mount the Tribrach correctly, failing to do so may result in injury if the tribrach were to fall over.

•It could be dangerous if the instrument falls over, please check that you fix the instrument to the tripod correctly.

•Risk of injury by falling down a tripod and an instrument.

Always check that the screws of tripod are tightened.

• It could cause measurement error when there is leave or other object between instrument and target.

User

1. This product is for professional use only!

The user is required to be a qualified surveyor or have a good knowledge of surveying, in order to understand the user manual and safety instructions, before operating, inspecting or adjusting.

2. Wear the required protectors (safety shoes, helmet, etc.) when operating.

Exceptions from Responsibility

1) The user of these products is expected to follow all operating instructions and make periodic checks of the product's performance.

2) The manufacturer, assumes no responsibility for results of a faulty or intentional usage or misuse including any direct, indirect, consequential damage, and loss of profits.

3) The manufacturer assumes no responsibility for consequential damage, and loss of profits by any disaster, (an earthquake, storms, floods etc.).

4) The manufacturer assumes no responsibility for any damage, and loss of profits due to a change of data, loss of data, an interruption of business etc., caused by using the product or an unusable product.

5) The manufacturer assumes no responsibility for any damage, and loss of profits caused by usage except for explained in the user manual.

6) The manufacturer assumes no responsibility for damage caused by wrong transport, or action due to connecting with other products.

Safety Standards for ALPHA X EDM Laser (ALPHA X series)

ALPHA X series adopt the class of Laser Product according to IEC Standard Publication 60825-1 Amd. 2:2001. According this standard, EDM device is classified as Class 3R Laser Product when reflectorless measurement is selected, when the prism and reflective sheet is selected as target, the output is equivalent to the safer class 1. Follow the safety instructions on the labels to ensure safe use.

CAUTION: CLASS 3R LASER RADIATION WHEN OPEN AVOID DIRECT EYE EXPOSURE. CAUTION: CLASS 1 LASER RADIATIONS WHEN OPEN DO NOT STARE INTO THE BEAM

Note for Safety

devices, it could cause permanent eye damage.

Applications	1
1. Nomenclature and functions	2
1.1 Nomenclature	2
1.2 Display	3
1.3 Operating Key	5
1.4 Function key (Soft Key)	6
2. Battery	8
2.1 Mounting the battery	8
2.2 Recharge	9
3. Preparation for measurement	10
3.1 Setting up the instrument	10
3.2 Leveling the instrument	10
3.3 Centering	12
3.3.1 Centering with optical plummet	12
3.3.2 Centering with laser plummet	12
3.4 Focusing	13
3.5 Switch on	13
3.6 Switch off	14
3.7 The function of \star key menu	14
3.8 How to input number and letter	15
3.9 Vertical Angle Tilt Correction	16
4. Angle Measurement	17
4.1 Measuring Horizontal Angle (Right) and Vertical Angle	17
4.2 Switching Horizontal Angle Right/ Left	18
4.3 Set a Horizontal Angle	19
4.4 Vertical Angle Grade Mode Switch	21
4.5 Zenith distance/ vertical angle mode switch	21
4.6 Set Buzzer Sounding for Horizontal Angle 90°	22
5. Distance Measurement.	23

Content

5 1 Distance Maggurement (Slope distance mode)	23
5.2 Stales aut (S.O.)	23
5.2 Stake out (S.O)	24
5.5 Set distance measurement mode	25
5.4 Set distance unit	26
5.5 Setting of the Atmospheric Correction	27
5.6 Returned signal Checking	28
5.7 Setting distance measurement times (Factory setting	is "3")
	29
6. Coordinate Measurement	30
6.1 Setting Coordinate of Occupied point	31
6.2 Setting of instrument height	32
6.3 Setting of target height	33
6.4 Setting coordinate of backsight point	34
6.5 Measuring point coordinate	35
7. Data collection	36
7.1 Data collection menu operation	36
7.2 Selecting a file for data collection	37
7.3 Selecting a coordinate file for data collection	37
7.4 Occupied Point Setting	39
7.5 Backsight Point	42
7.6 Operational Procedure of "Data Collect"	44
7.7 Setting PCODE for measured point	46
7.7.1 Entering PCODE / ID using PCODE Library	46
7.7.2 Entering PCODE / ID from the list of PCODE	47
7.8 Data Collect Offset Measurement mode	48
7.8.1 Angle offset measurement	48
7.8.2 Distance Offset Measurement	
7.8.3 Plane Offset Measurement	
7 8 4 Column Offset Measurement	
7 9 NEZ Auto Calculation	56

7.10 "Setting Parameter of Data Collect [CONFIG.]"	56
7.11 Setting Parameter of Data Collect [CONFIG.]	57
8. Coordinate Layout	59
8.1 Layout procedures	59
8.2 Selecting or creating a coordinate data file	
8.3 Occupied Point Setting	61
8.4 Setting Backsight Point	63
8.5 Executing a Layout	64
8.6 Setting the GRID FACTOR	68
9. Application Measurement (Programs)	70
9.1 Remote Elevation Measurement (REM)	70
9.2 Missing Line Measurement (MLM)	73
9.2.1 Missing Line Measurement	73
9.2.2 USE FILE and GRID FACTOR	76
9.2.3 Use coordinate for MLM program	77
9.3 Setting Z Coordinate of Occupied Point	
9.4 Area Measurement	82
9.4.1 Area Calculation from Coordinate Data File	82
9.4.2 Area Calculation from measured data	83
9.5 Point to Line	85
9.6 Setting a new point	
9.6.1 Side short method	
9.6.2 Resection method	90
9.7 Road measurement	93
9.7.1 Input Element	94
9.7.2 Road Setout	99
10. Memory Manager Mode	106
10.1 Enter Memory Manager Mode	106
10.2 Display Internal Memory Status	107
10.3 Searching data	107

10.3.1 Measured data searching	107
10.3.2 Coordinate Data Searching	109
10.3.3 PCODE Library Searching	110
10.4 File Maintenance	
10.4.1 Rename a file	112
10.4.2 Deleting a File	112
10.4.3 Searching Data in a File	113
10.5 Coordinate Data Direct Key input	113
10.6 Delete a Coordinate Data from a File	115
10.7 Editing PCODE Library	116
10.8 Data Transfer by serial port	117
10.8.1 Sending data	117
10.8.2 Loading data	118
10.8.3 Setting parameter of data communications.	119
10.9 Memory initialize	120
10.10 MEMORY SELECT	121
10.11 Connect PC via miniUSB port	122
10.12 DAT data change	123
11. Instrument Settings	124
11.1 Items of instrument settings	124
(* factory setting)	125
11.2 Enter setting mode	126
11.3 Setting procedures	127
12. Selecting Mode	128
12.1 Items of selecting mode	128
12.2 How to set selecting mode	132
13. Check and adjustment	134
13.1 Checking and adjusting of instrument constant	134
13.2 Checking/adjusting the plate level	136
13.3 Checking/adjusting the circular level Check	137

13.4 Checking/adjusting the optical sight138
13.5 Checking/Adjusting the plummet139
13.5.1 Checking/Adjusting the optical plummet Check. 139
13.5.2 Checking/Adjusting the laser plummet (Optional
accessory)140
13.6 Checking/Adjusting the vertical cross-hair on telescope141
Adjustment141
13.7 Checking/adjusting horizontal collimation error Check. 142
13.8 Checking/adjusting of the vertical index error i142
13.9 Checking the optical axis145
14. Packing list
Attachment 1: atmospheric correction formula and chart (for your
reference)147
Attachment 2 Correction for refraction and earth curvature150
Attached file 3: communication instruction and data format151

Applications

ALPHA X series Total Station applied absolute encoder system to digital angle measurements, it adopts phases measurement system to measure distance. It can measure distance not only with prism but also with reflective sheet, so much as it can work without cooperate objective. It can achieve measurement, calculating, display and storage etc. by means of microcomputer-technology. It can display measuring results of horizontal, vertical angle and distance at the same time.

These series Total Station is designed for engineering items, especially for every construction area. It can be used in coordinate measurement or location measurement for construction, remote elevation measurement, plumb line surveying, ductwork surveying and sectional surveying etc. It also can be used in triangulation control survey, cadastral surveying, topographic surveying and house property surveying.

1. Nomenclature and functions

1.1 Nomenclature

1.2 Display

The display uses self-luminous pattern LCD which has 6 lines and 8 characters per line. In general, the upper five lines display measured data, and the sixth line displays the soft key function which changes with the measuring mode.

There are two type modes: measurement mode and menu mode.

♦ Measurement mode of ALPHA X series:

VZ: 81° 54′ 21″ HR: 157° 33′ 58″ Ē 0SET HOLD HSET P1

Angle measurement mode Zenith distance: 81° 54′ 21″ H-angle:157° 33′ 58″

HR: 157° 33′ 58″	
VZ: 81° 54′ 21″ SD: 1.425m	~
HD: 0.645m	
VD: 1.271m DIST MODE S/A P1	

Distance measurement mode 1 Zenith distance: 81° 54′ 21″ H-angle: 157° 33′ 58″ Slope distance: 1.425 m Horizontal distance: 0.645 m Vertical distance: 1.271m

N:	5.86	8m	
E:	-3.30)8m	
Z:	0.22	6m	
DIST I	MODE	S/A	P1

Coordinate measurement mode

- N: 5.868 m
- E: -3.308 m
- Z: 0.226 m

• Example of menu mode:

1/2↓ MENU F1:DATA COLLECT F2:LAYOUT Ξ F3:MEMORY MGR. F4:PROGRAMS

PARAMETERS 1 1/2 ↓	
F1:MIN ANG READING	
F2:AUTO OFF	<u>رم</u>
F3:TILT	
F4:RS-232C	

MENU(page 1,total 4) Press F1 enter "data collect" Press F2 enter "layout" Press F3 enter "memory MGR." Press F3 enter "tilt" for sensor Press F4 enter "programs" • Display mark

Press F1 enter "min.angle reading"

PARAMETERS

Press F2 enter "auto off"

Press F4 enter "RS-232C"

VZ	Zenith distance	
VH	Height angle	
V%	grade	
HR/HL	H-angle right/H-angle left	
SD/HD/VD	S-distance/H-distance/Vertical distance	
Ν	N coordinate	
Е	E coordinate	
Z	Z coordinate	
PT#	Point number	
ST/BS/SS	Measured station/Backsight/Collected point	
Ins.Hi(I.HT)	Instrument height	
Ref.Hr(R.HT)	Prism height	
ID	Registered number of PCODE	
PCODE	Point code	
1/3. 2/3. 3/3	Page 1/Page 2/Page 3	

1.3 Operating Key

Keys	1st Function 2nd Function			
F1-F4	Functions keys correspond	Functions keys correspond		
	message displayed	message displayed		
0~9	Enter number	Enter letter or other		
		character		
ESC	Escape from menu			
*	Hot key for fast settings			
1	Power on/off			
MENU	Enter menu			
ANG	Switches to the angle			
	measurement mode			
	Enter S-distance H-distance			
	model measurement model			
1.	Enter coordinate			
	measurement model			
ENT	Confirm data entry			

1.4 Function key (Soft Key)

The Soft Key function is displayed at the bottom line of display. The function is changed with measurement mode.

Angle measurement mode

N:	5.868m
E:	-3.308m
Z:	0.226m
DIST N	IODE S/A P1
RFHT	IHT INCO P2
OFST	BS m/f/i P3

Coordinate measurement mode

Distance measurement mode

Descriptions

Mode		Display	Soft key Function	Function
		mark		
P1		OSET	F1	Horizontal angle is set to 0
	P1	HOLD	F2	Hold the horizontal angle
		HSET	F3	Setting horizontal angle by input values
nent		TILT	F1	Setting tilt compensator on/off
	P2	REMS	F2	Enter repeat angle measurement program
surei		V%	F3	Switch grade/zenith distance VZ
meas		HABZ	F1	Buzzer set for every horizontal angle 90°
Angle 1	P3	HARL	F2	Switch horizontal angle mode (HR/HL)
		CMPS	F3	Set a vertical angle mode(VH/VZ)
		DIST	F1	Start distance measurement
neas.	P1 P2	MODE	F2	Select the measurement model as fine or track
		S/A	F3	EDM setting
I eo I		OFST	F1	Select Offset measurement program
istar		S.O.	F2	Select stake out measurement program
S-d		m/f/i	F3	Change the display of distance unit
		DIST	F1	Start distance measurement
	P1	MODE	F2	Select the measurement model as fine or track
IS.		S/A	F3	EDM setting
meá	P2	RFHT	F1	Set prism height
nate		IHT	F2	Set instrument height
ordi		INCO	F3	Sets occupied station coordinate
Ŭ		OFST	F1	Enter offset measurement program
	P3	BS	F2	Sets back sight point coordinate
		m/f/i	F3	Change the distance unit

2. Battery

2.1 Mounting the battery

(1) Insert the battery by aligning the battery pack's tenon with the notch in the instrument, press the battery clamp and push the top of the battery pack until you hear a click.

(2)Removing the battery

Press the battery clamp and remove the battery pack by pulling it toward you.

(3)Battery Indicator

Battery power display indicates the power condition. You should recharge or replace the battery when you hear the continue buzz.

battery when you hear the continue buzz. Please turn off in the normal way in order to save the data. Please find the battery operating time on Specifications.

Battery power display

2.2 Recharge

1. Plug the charger on 220V-110V AC power supply, the red lamp lighting.

2. When recharge is complete, the light become green. Normally, it will take about 3-4 hours.

Caution: For indoor use only.

Note:

1. The new battery (or not be used for long time) need to recharge and discharge for several times, the battery could become the good performance for using. Please recharge more than 10 hours.

2. Please prolong charge 1-2 hours after green lamp lighting to reach the best performance.

3. Lamp situation: red lamp lighting--charging; green lamp lighting--charge complete; red lamp flash--waiting, not connecting or battery defective.

4. If the red lamp flashes when plug the charger, please remove the charger and wait a minute to plug it again.

3. Preparation for measurement

3.1 Setting up the instrument(1) Setting up the tripodFirst, extend the extension legs tosuitable lengths and tighten thescrews on the midsections

(2) Attaching the instrument on the tripod head

Place the instrument carefully on the tripod head and slide the instrument by loosening the tripod screw.

3.2 Leveling the instrument

(1) Leveling with the circular level

by adjusting leveling screws A and B, position the bubble in the center of vial (Fig a).

Adjust the leveling screw C, position the bubble in the center of circle (Fig b).

(2) Leveling precisely by plate level

Loosen horizontal motion clamp, place the plate level in parallel with the line joining leveling screws A and B. Adjust the leveling screws A and B, position the bubble in the center of the plate level (Fig c).

Loosen horizontal motion clamp,

rotate the plate level through 90° around the vertical axis. Adjust leveling screw C, position the bubble in the center of plate level (Fig d).

Repeat above steps until the bubble remains in the center of plate level while the instrument is rotated to any position.

(3) Loosen the center screw of the tripod, and move the base plate on the tripod head until the laser spot coincides with the ground mark point. Tighten the center screw.

(2)Turn the focusing knob until the laser spot on the same horizontal plane with mark point on the ground.

(4) Repeat leveling and (3) steps until the instrument keeps leveling

12

to increase laser intensity, or press F2 to decrease laser intensity, at

(1) Press \star key to open fast setting menu, and press F4 to open plummet laser intensity adjusting menu, press F1

Laser Point Adjust 3.3.2 Centering with laser plummet Level: 4

3.3.1 Centering with optical plummet Leveling the instrument by plate level

first. Rotate the focusing ring of the

optical plummet and adjust the focus to

the ground mark point. Then loosen the center screw of the tripod, look through the optical plummet, and move the base plate on the tripod head until the center

mark coincides with the ground mark point. At last tighten the center screw.

instrument

last press F4(ENT) to confirm.

reticle coincides with the mark point when rotating alidade of

Repeat above steps to leveling the instrument again, until the center of

ENT

3.3 Centering

3.4 Focusing

(1) Diopter adjustment

Point telescope to sky or a uniformly light surface (Do not point to the sun). Turn eyepiece until cross hairs are sharp and black. (2) Target image focusing Reticle

Look through telescope eyepiece and tum focusing ring until target is seen. There should be no apparent movement between cross hairs

and target as observer moves his eye slightly. If there is parallax, please remove it by adjusting the focusing ring slightly.

3.5 Switch on

1. Confirm the instrument is leveled and centered.

2. Press power key to switch on.

3. It will show the software version and model first, then to show LCD Contrast adjusting screen. It also shows current prism constant value (PSM) and atmospheric correction value (PPM). You could press F1 or F2 to adjust the contrast. Then press F4 to confirm and enter basic measurement mode.

Check the battery power indicator, recharge battery when battery level is low or indicates "battery empty".

Flow chart for switch on

3.6 Switch off(1)Press power key.(2)Press F3 to switch off; Press F4 back to the latest page.

Flow chart for switch off

Item Functions **Operating keys** Backlight Backlight on or off F1 Laser pointer On/Off Laser Point F2 Target Type Target setting F3 PRISM/SHEET/No PRISM / LPRISM Laser plummet Laser F4 plummet intensity adjusting EDM F1 EDM settings Tilt TILT on or off F2 CONTRAST Display contrast F3 adjusting

3.7 The function of \star key menu

3.8 How to input number and letter

For ALPHA X series, the number and letter can input with keyboard directly. Example: Create one file for data collect program

Operating procedure	Operation	Display
①Enter the menu by press	[MENU]	MENU 1/2↓
the [MENU] key.		F1:DATA COLLECT F2:LAYOUT
2 Press [F1] key to enter	[F1]	F3:MEMORY MGR. F4:PROGRAMS
file selecting screen, press		
the [F1](INPT) key to	[F1]	SELECT A MELLE
rename file name. And		FN:S
press [F1] to switch	[F1]	
inputting mode from		INPT LIST ENT
number to letter(ALPH).		SELECT A MELLE
③Input letter one by one		FN:S
※1) Input "S"	[7]	
Move the cursor	•	ALPH SPC CLR ENT
Input "U"	[7][7][7]	SELECT A MELLE
Input "N"	[5][5]	FN=SUN_01
Input "-"	[-]	
(4) Press [F1] (ALPH) key to	[F1]	NUM SPC CLR ENT
switch inputting mode from	[0][1]	After input a number, the
letter to number.		cursor will move backward
Input "01"		automatically
⑤Press the [F4] key to		
confirm		

%1) If one letter need to be input twice or more, after input the front letter, press the key to move cursor, then input the following letter again.Press F2 (SPC) key to enter a space.

Press F3[CLR]key, all the input characters will be deleted.

3.9 Vertical Angle Tilt Correction

When the tilt sensors are activated, automatic correction of vertical angle for mislevelment is displayed.

To ensure a precise angle measurement, tilt sensors should be turned on. The display can also be used to precise level the instrument. If the display(X/Y Tilt over) appears the instrument is out of automatic compensation range and must be leveled manually.

The vertical angle display is unstable when instrument is on an unstable stage or a windy day. You can turn off the auto tilt correction function in this case.

Operating procedure	Operation	Display
①Under Angle measurement mode, press[F4] to enter P2.	[F4]	VZ: 82° 21′ 50″ HR: 157° 33′ 58″ TILT REMS V% P2
②Press [F1] key. In case ON is already selected, the display shows tilt correction value. **1)	[F1]	TILT [ON] X: -0° 1′ 12″ ON OFF
③Press[F3](OFF) key.④Press[ESC]key.	[F3] [ESC]	TILT [OFF]

Example: Setting Tilt OFF

%1) The setting mode performed here will not be memorized after powering OFF. To set TILT correction in the initialized setting (it is memorized after powering OFF).

4. Angle Measurement

4.1 Measuring Horizontal Angle (Right) and Vertical Angle Make sure the mode is in Angle measurement

Operating procedure	Operation	Display
①Collimate the 1st target (A).	Collimate A	VZ: 89° 25′ 55″ HR: 157° 33′ 58″ OSET HOLD HSET P1
②Set horizontal angle of target A at 0°00'00, press the [F1](0SET) key and press the [F3] (YES) key.	[F1] [F3]	H-ANG SET0 >SET?
③Collimate the 2nd target (B).The horizontal angle between B and A and vertical angle of B be displayed	Collimate B	VZ: 89° 25′ 55″ HR: 0° 00′ 00″ OSET HOLD HSET P1 VZ: 124° 34′ 20″ HR: 56° 21′ 01″
displayed.		0SET HOLD HSET P1

Reference: How to Collimate

 Point the telescope toward the light back ground. Turn the diopter ring and adjust the diopter so that the cross hairs are clearly observed.
 Aim the target at the cross hair of the sighting collimator. Allow a certain space between the sighting collimator and yourself for collimating.

③Focus the target with the focusing knob.

% If parallax is created between the cross hairs and the target when your eyes move vertically or horizontally, focusing is incorrect or diopter adjustment is poor. This affects precision in measurement. Eliminate the parallax by carefully focusing and using diopter adjustment.

4.2 Switching Horizontal Angle Right/ Left

Make sure the mode is Angle measurement.

Operating procedure	Operation	Display
 Press the [F4] key twice to get the function on page3. Press [F2] (HARL) 	[F4] [F4] [F2]	VZ: 89° 25′ 55″ HR: 168° 36′ 18″ HABZ HARL CMPS P3
key. The mode Horizontal angle Right (HR) Switches to (HL) mode.		VZ: 89° 25′ 55″ HL: 191° 23′ 42″ HABZ HARL CMPS P3
③Measure at HL mode as HR mode.		
•Every time pressing the [alternately.	F2] (HARI	L) key, HR/HL mode switches

4.3 Set a Horizontal Angle

1) Setting by Holding the Horizontal Angle

Make sure the mode is angle measurement

Operating procedure	Operation	Display
①Set the required horizontal angle, using Horizontal tangent screw	Display angle	VZ: 89° 25′ 55″ HR: 191° 23′ 42″ ØSET HOLD HSET P1
 ②Press[F2](HOLD) key. ③Collimate the target. ※ 1) ④Press [F3](YES) key to finish holding the horizontal angle. The display turns back to englage 	[F2] [F3]	H-ANG HOLD HR: 191° 23′ 42″ YES NO
measurement mode.	us mode. r	HR: 191° 23′ 42″ OSET HOLD HSET P1 press the [F4] (NO) key.

2) Setting a horizontal angle by the number key

Make sure the mode is Angle measurement

Operating procedure	Operation	Display
①Collimate the target.		
②Press[F3](HSET)key.	Collimate [F3]	VZ: 89°25′55″ HR: 168°36′18″″ ©SET HOLD HSET P1
③Input the required		
horizontal angle by using keys.※1 For example:80°30′50″	[F1] [80.3050]	H-ANG SET HR= 80.3050
⁽⁴⁾ Press[F4] to set the horizontal angle.	[F4]	VZ: 89° 25′ 55″ HR: 80° 30′ 50″ OSET HOLD HSET P1

※1) If input is mistake, press [MENU] (▶)or [F3](CLR) to cancel the input.

If the input fault, you have to repeat step from \Im .

4.4 Vertical Angle Grade Mode Switch

Make sure the mode is Angle measurement

Operating procedure	Operation	Display
①Press[F4] key to get the	[F4]	VZ: 67° 38′ 15″
function on page 2.		HR: 168° 36′ 19″
	[F3]	0SET HOLD HSET P1 TILT REMS V% P2
②Press [F3](V%) key. ※1)		V: 41.13% HL: 168° 36′ 19″ TILT REMS V% P2

(1) Every time pressing the [F3] (V%) key, the display mode switches.

4.5 Zenith distance/ vertical angle mode switch Make sure the mode is Angle measurement

Operating procedure	Operation	Display
$\textcircled{1}\label{eq:Press}$ [F4] (P1) key to get	[F4]	Vz: 67° 38′ 15″
the function on page3.		HR: 168° 36′ 19″
		0SET HOLD HSET PI
		HABZ HARL CMPS P3
⁽²⁾ Press [F3] (CMPS) key.	[F3]	VH: 22° 21′ 42″
**1)		HL: 168 36 19"
		HABZ HARL CMPS P3

%1) Every time press the [F3] key, the display mode switches.

•At VH mode, vertical angle is 0 when telescope is in horizontal direction.

4.6 Set Buzzer Sounding for Horizontal Angle 90° When the horizontal angle falls in the range of $\pm 1^{\circ}$ of 0° , 90° , 180° or 270° , the buzzer sounds. Buzzer stops only when the horizontal angle is adjusted to $0^{\circ}00'00''$, $90^{\circ}00'00''$, $180^{\circ}00'00''$ or $270^{\circ}00'00''$.

This setting is not memorized after powering off.

Make sure the mode is Angle measurement

Operating procedure	Operation	Display
①Press the [F4] key twice to get the function on page 3.	[F4][F4]	Vz: 89° 25′ 55″ HR: 168° 36′ 19″ OSET HOLD HEST P1 TILT REMS V% P2 HABZ HARL CMPS P3
②Press [F1] key.	[F1]	HA Buzzer [F1:ON] F2:OFF
③Press [F1] (ON) key or [F2] (OFF) key to select the buzzer ON/OFF.	[F1] or [F2]	HA Buzzer [F1:ON] F2:OFF
(4)Press [F4] key to set.	[F4]	VZ: 89° 25′ 55 " HR: 168° 36′ 18 " HABZ HARL CMPS P3

5. Distance Measurement

5.1 Distance Measurement (Slope distance mode)

Make sure the mode is angle measurement.

Operating procedure	Operation	Display
①Press [] key.②Collimate the center	[4]]	HR: 157° 33′ 58″ VZ: 81° 54′ 21″ SD: 0.000m HD: 0.000m VD: 0.000m DIST MODE S/A P1
of prism. ③Press[F1]key to start measure distance.※1)	[F1]	HR: 157° 33′ 58″ VZ: 81° 54′ 21″ SD*[r]-< m HD: 0.000m VD: 0.000m DIST MODE S/A P1
④ The measured distance are shown.※2)~※4)		HR: 157° 33′ 58″ VZ: 81° 54′ 21″ SD: 1.425m HD: 0.645m VD: 1.271m DIST MODE S/A P1

※1) When EDM is working, the"- <"mark appears in the display.
※2) The measured distance appears with buzzer sounds.
※3) The displayed measured distance values depend on the different

**3) The displayed measured distance values depend on the different measurement mode. When the mode is Single measurement, the value is the current measured distance; When the mode is Continuous measurement, the latest display is the average value; When the mode is tracking measurement, the measured distance precision is 0.01m.
**4) If the target is covered, distance can't be measured. Please make sure there is nothing between the target and instrument telescope.

5.2 Stake out (S.O)

The difference between the measured distance and the input stake out distance is displayed.

Displayed value=Measured distances-Stake out distance In stake out operation, you can select either horizontal distance (HD), relative elevation(VD)or slope distance (SD).

Make sure the mode is Distance measurement

Operating procedure	Operation	Display
①Press [F4] (P1) key from distance measuring mode to get the function on page 2.	[F4]	HR: 157° 33′ 58″ VZ: 81° 54′ 21″ SD: 1.425m HD: 0.645m VD: 1.271m DIST MODE S/A P1
②Press [F2] (S.O) key.	[F2]	OFST S.O m/f/i P2
③Press[F1](HD) key.※1)		SET OUT HD: 0.000m
(4)Enter the distance for	[F1]	HD VD SD
stake out and press [F4] key. Collimate the prism.	[F4]	SET OUT HD: 10.000m
 ⑤Press [F4] key to return P1, press [F1] to start measuring. +value means move prism toward the instrument. -value means move prism backward the instrument. 	[F4] [F1]	CLR ENT HR: 157° 33′ 58″ VZ: 81° 54′ 21″ SD: 1.425m dHD: -0.285m VD: 1.271m DIST MODE S/A P1

(1) At step (4), if we set the stake out distance as 0, the program will
return to normal distance measurement mode.

5.3 Set distance measurement mode

There are three modes that can be selected: F1: FINE, F2: TRK, F3: RAP

For F1: FINE mode, press [DIST] key to measure distance according to the set times, the first measuring time is about 3s, minimum reading is 1mm.

For F2: TRK mode, press [DIST] key to measure distance continuously until press [ESC] key, the first measuring time is about 2s, minimum reading is 10mm.

For F3: RAP mode, press [DIST] key to measure distance according to the set times, the first measuring time is about 2s, minimum reading is 1mm.

Operating procedure	Operation	Display
① Press[F2](MODE) key.	[F2]	
		HR: 157° 33′ 58″ VZ: 81° 54′ 21″ SD: 1.425m dHD: -0.285m VD: 1.271m DIST MODE S/A P1
2 Press [F1](FINE),[F2](TRK) or [F3](RAP) to change to the required mode, and it will be back to normal measurement screen.	[F1], [F2] or [F3]	HR: 157° 33′ 58″ VZ: 81° 54′ 21″ SD: 1.425m dHD: -0.285m VD: 1.271m FINE TRK RAP

Make sure the mode is Distance measurement

5.4 Set distance unit

Make sure the mode is Distance measurement

Operating procedure	Operation	Display
① Press[F4](P1) key from	[F4]	
distance measuring mode to get the function on page 2.		HR: 157° 33′ 58″ VZ: 81° 54′ 21″ SD: 1.425m dHD: -0.285m VD: 1.271m DIST MODE S/A P1
② Every time press [F3](m/f/i), the current unit will change among m, ft, inch in sequence.	[F3]	OFST S.O m/f/i P2

5.5 Setting of the Atmospheric Correction

These series of total stations can realize the atmospheric correction by inputting directly the temperature and pressure value.

Operating procedure	Operation	Display
 Press [F3]key(S/A) to enter EDM SET mode. 	[F3]	HR: 157° 33′ 58″ VZ: 81° 54′ 21″ SD: 1.425m dHD: -0.285m VD: 1.271m DIST MODE S/A P1
		EDM SET PSM-30.0 PPM -1.9 Signal: [] PSM PPM T-P TIMS
② Press [F3] key.	[F3]	T&P TEMP = 18.0_ ° C PRES : 1020.0 hPa CLR ENT
③ Input the		
temperature and pressure values.	(174)	T&P TEMP = 25_{\circ} C PRES : 1020.0 hPa
Press[F4]key to save the setting.	[F4]	CLR ENT

Make sure the mode is Distance measurement.

Note: One EDM SET page you can also press PSM to input prism constant or press PPM to directly set PPM value.

The atmospheric correction is little effect on distance measurement. But if the input Temp. value and pressure value is big different from the measuring value, the distance different should be more than 0.001m.

Input range: -40. 0°C< Temperature< +60.0°C

-40. 0°F< Temperature< $+140.0$ °F		
Input range:	+500.0hpa <pressure< +1500.0hpa<="" td=""></pressure<>	
+500.0mbar <pressure< +1500.0mbar<="" td=""></pressure<>		
+375.0mmHg <pressure< +1125.0mmhg<="" td=""></pressure<>		
+14.8inhg <pressure< +44.3inhg<="" td=""></pressure<>		
+7.3psi <pressure< +21.8hpa<="" td=""></pressure<>		

5.6 Returned signal Checking

Check to make sure that sufficient reflected light is returned by the reflective prism sighted by the telescope. Make sure the mode is Distance measurement.

Ope	rating procedure	Operation	Display
1	Press [F3]key(S/A) to enter EDM SET mode.	[F3]	HR: 157° 33′ 58″ VZ: 81° 54′ 21″ SD: 1.425m dHD: -0.285m VD: 1.271m DIST MODE S/A P1
2	The intensity of current returned signal is shown on the third line		EDM SET PSM-30.0 PPM -1.9 Signal: [] PSM PPM T-P TIMS
0	return the previous mode.	[ESC]	

5.7 Setting distance measurement times (Factory setting is "3")

Operating procedure	Operation	Display
 Press [F3]key(S/A) to enter EDM SET mode. 	[F3]	HR: 157° 33′ 58″ VZ: 81° 54′ 21″ SD: 1.425m dHD: -0.285m VD: 1.271m DIST MODE S/A P1
		EDM SET PSM-30.0 PPM -1.9 Signal: [] PSM PPM T-P TIMS
2 Press [F4] key.	[F4]	DIST TIMES SET TIMES=3_
(3) Input the distance measurement times. Press[F4]key to save the setting.	[F4]	DIST TIMES SET TIMES=5_ CLR ENT

Make sure the mode is Distance measurement.

NOTE: It is not possible to set the times as "0". The appropriate time is "3", which is better for saving power and high accuracy. The range is between 1 and 99.

6. Coordinate Measurement

•

Set the coordinates of the instrument (occupied point) and backsight point, the instrument can measure and displays the unknown point (prism point) coordinates

Press [2] key to switch to coordinate measurement mode.

6.1 Setting Coordinate of Occupied point

Operating procedure	Operation	Display
①Press [-] key.	[].]	N: 0.000m E: 0.000m
②Press [F4] key to display the function page2.	[F4]	Z: 0.000m DIST MODE S/A P1 RFHT IHT INCO P2
③Press [F3] (INCO) key. ※1)	[F3]	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
 ④Enter the coordinate. ※2) ⑤After NEZ coordinate is entered, press [F4] to confirm, the instrument returns coordinate measurement menu on page 2 	Enter NEZ data [F4]	N: 123.456m E: -987.015m Z: 0.803 m CLR ENT

1) Coordinate data input by keyboard directly

**1) "="means the current entering item, the item can be entered right now. After enter and press [F4] key, the"="moves to the next line. If this item need not to enter, press [F4] key to move "=" directly.
*2) Input range: -99999999.9990m
N,E,Z< +99999999.9990m
Input range: -99999999.9990ft
N,E,Z< +99999999.9990ft
Input range: -99999999.11.7ft+in

6.2 Setting of instrument height After power off, the instrument height can be saved.

Operating procedure	Operation	Display
①Press [-] key.	[].]	N: 123.456m E: -987.015m
②Press [F4] key to display the function page2.	[F4]	Z: 0.803 m DIST MODE S/A P1 RFHT IHT INCO P2
 ③Press [F2] (IHT) key. ④Enter the instrument height, press F4 to confirm, 	[F2]	INSTRUMETN HEIGHT INPUT Ins.Hi=1.174_ m CLR ENT
the instrument returns	Enter	
coordinate measurement	Inst.H	N: 123.456m
menu on page 2. ※1)	[F4]	E: -987.015m Z: 0.803 m RFHT IHT INCO P2
%1) Input range: -999.9990m< Inst.H< +999.9990m		
Input range: -999.9990ft< Inst.H< +999.999f0t		
Input range: -999.11.7 ft+in< Inst.H< +999.11.7 ft+in		

6.3 Setting of target height After power off, the target height can be saved.

Operating procedure	Operation	Display
①Press [二·]key .	[2.]	N: 123.456m E: -987.015m
②Press[F4]key to display the function page2.	[F4]	Z: 0.803 m DIST MODE S/A P1 RFHT IHT INCO P2
 ③Press[F1](RFHT)key. ④Enter the target height, press F4 to confirm, the 	[F1]	REF HT INPUT Ref.Hr=2.500_ m CLR ENT
instrument returns	Enter	
coordinate measurement	Targ.H	N: 123.456m
menu on page 2 ※1)	[F4]	E: -987.015m Z: 0.803 m RFHT IHT INCO P2
%1) Input range: -999.9990m< Ref.H< +999.9990m		
Input range: -999.9990ft< Ref.H< +999.9990ft		
Input range: -999.11.7 ft+in< Inst.H< +999.11.7 ft+in		

6.4 Setting coordinate of backsight point

Direct key input of coordinate data

Operating procedure	Operation	Display
 ①Displaying the coordinate measurement mode on page3. ②Press [F2] key to get the 	[F2]	N: 123.456m E: -987.015m Z: 0.803 m DIST MODE S/A RFHT IHT IHT INCO P2 OFST BS M= 0.000_m
function of setting backsight point.	[]	E: 0.000m Z: 0.000m CLR
 ③Enter the coordinate. ④After NEZ coordinate is entered; press [F4] to 	Input N,E,Z [F4]	N= <u>0</u> .000m E: 0.000m Z: 0.000m CLR ENT
confirm. (5) Collimate backsight point prism center, press [F3] (YES) key. The azimuth angle is set, and instrument returns coordinate measurement menu on page 3.	AIM [F3]	BACKSIGHT HR: 12° 34′ 56″ >Sight? YES NO N: 123.456m E: -987.015m Z: 0.803 m OFST BS m/f/i P3

6.5 Measuring point coordinate

After setting the coordinate of instrument and backsight, instrument height and target height, collimate the point to measure its coordinate.

Operating procedure	Operation	Display
①In coordinate measurement mode function page1.	Collima	N: 123.456m E: 987.654m Z 1.000m DIST MODE S/A P1
[F1] key, the instrument begins to measure distance and then give the final result.	te [F1]	N: 123.456m E:*[3]-< m Z -2.345m DIST MODE S/A P1

7. Data collection

These series of total stations are able to store the measured data into the internal memory. The internal memory is shared by the measured data files and the coordinate data files.

7.1 Data collection menu operation

7.2 Selecting a file for data collection

Select a file before beginning data collection. The measured data could be stored into the selected file.

Operating procedure	Operation	Display
①Press [MENU] key enter the menu display.	[MENU]	MENU 1/2 ↓ F1:DATA COLLECT F2:LAYOUT F3:MEMORY MGR. F4:PROGRAMS
⁽²⁾ Press [F1] key enter data collection.	[F1]	SELECT A M.FILE FN: INPT LIST ENT
③Press [F2] key to display the file list. ※1)	[F2]	>*1 /M0003 1SV /M0000 TOP LAST SRCH ENT
(4) Scroll file list by pressing [▲]or [\checkmark] key and select one file to use $((3))$	[▲] [▼]	1 /M0003 >*1SV /M0000 S /M0000 TOP LAST SRCH ENT
⑤Press [F4] key. The file will be set.	[F4]	$\begin{array}{c} \text{COLLECT} & 1/2 \downarrow \\ \text{F1: OCC. PT# INPUT} \\ \text{F2: BACKSIGHT} \\ \text{F3: FS/SS} \\ \text{F4: SELECT} \text{A} \text{FILE} \end{array}$

%1) If you want to input file name directly, press[F1] key and enter a file name.

 \approx 2) When a file has been selected already, "*"mark is indicated on left of current file name.

7.3 Selecting a coordinate file for data collection When coordinate data in a coordinate date file are used for occupied

Operating procedure	Operation	Display
①On data collection menu press [F4]key.	[F4]	COLLECT 1/2↓ F1: OCC. PT# INPUT F2: BACKSIGHT F3: FS/SS F4: SELECT A FILE
2 Press [F2] key.	[F2]	SELECT A FILE F1 : MEAS. FILE F2: COORD. FILE
		FN: INPT LIST ENT
④ Press[F2] key to display the list of file.	[F2]	>@A-GEO_01 /C0012 A-GEO_02 /C0102 A-GEO_03 /C0008 TOP LAST SRCH ENT
⑤Scroll file list by pressing [▲]or [♥]	[▲] or	A-GEO_01 /C0012 >@A-GEO_02 /C0102
key and select a file to use.	[♥]	A-GEO_03 /C0008 TOP LAST SRCH ENT
[®] Press [F4]key. The file will be set.	[F4]	COLLECT 1/2↓ F1: OCC. PT# INPUT F2: BACKSIGHT F3: F5/SS F4: SELECT A FILE

point or backsight point, select a coordinate file beforehand.

%1) If you want to input file name directly, press[F1] key and enter a file name.

 \approx 2) When a file has been selected already, "@"mark is indicated on left of current file name.

7.4 Occupied Point Setting

1) Setting the coordinate data from the internal memory.

Operating procedure	Operation	Display
①Make sure the displaying is Data Collect menu.		COLLECT 1/2↓ F1: OCC. PT# INPUT F2: BACKSIGHT F3: FS/SS F4: SELECT A FILE
②Press [F1] (OCC. PT# INPUT) key, displays PT# input menu.	[F1]	PT# > PCODE : Ins.Hi : 1.000 m INPT SRCH REC STN
③Press [F4] key.	[F4]	OCC. PT PT#: INPT_LIST_NEZ_ENT
 (4) Press[F2] key to display the list of PT#. **1) (5) Scroll PT# list by 	[F2]	[AGEO] > F001 F002 VIEW SRCH ENT
pressing [▲] or [♥] key and select PT#. Press [F4] key. ※2) ※3)	[▲]or [▼] [F4]	N 5.620m E 4.210m Z 1.250m >OK? NO YES
(7) Enter Ins. Hi, PCODE,	[13]	

Press [F3] key.			
※1) If you want to input PT	f# directly, pr	press [F1]key and enter PT#.	
*2) The coordinate data can be viewed by press [F1](VIEW)key.			
%3) The coordinate data can be searched by press [F2](SRCH) key.			
&4) If the input number is 0-50, it should be ID of PCODE in library.			
2) Input the instrument point coordinates by hand			
Operating procedure	Operation	n Display	

Operating procedure	Operation	Display
---------------------	-----------	---------

1	Make sure the displaying is Data Collect menu.		COLLECT 1/2↓ F1: OCC. PT# INPUT F2: BACKSIGHT F3: FS/SS F4: SELECT A FILE
2	Press[F1](OCC. PT# INPUT) key , displays PT# input menu.	[F1]	PT# >0 PCODE:PV Ins.Hi: 1.000 m INPT SRCH REC STN
3	Press [F4] key.	[F4]	OCC. PT PT#:0 INPT LIST NEZ ENT
4	Press [F3] (NEZ) to enter coordinate input menu.	[F3] [F1] Input	OCC. PT N: 123.456 m E: 987.654 m Z> -1.608_ m CLR ENT
5	Press[F4]key and enter coordinate point number. Press[F4]key	coord [F4]	
	to confirm.	point number [F4]	PT# >5 PCODE : Ins.Hi : 1.000 m INPT SRCH REC STN
(6)	Input the PCODE and Ins.Hi and then press [F3] to record	[F3]	PT# :5 PCODE : Ins.Hi : 1.000 m INPT SRCH REC STN

7.5 Backsight Point

1) Setting the coordinate data from the internal memory

Make sure the mode is Data Collect.

Operating procedure	Operation	Display
 Make sure the displaying is Data Collect menu. 		COLLECT 1/2↓ FI: OCC. PT# INPUT F2: BACKSIGHT F3: FS/SS F4: SELECT A FILE
②Press [F2] (BACK SIGHT) key.	[F2]	BS# > PCODE: Ref.Hr: 0.000m INPT 0SET MEAS BS
③Press [F4] (BS) key. ※1)	[F4]	BACK SIGHT PT# : INPT LIST NEAZ ENT
 ④Press[F1] key and enter PT#.※2) ⑤Press[F4] key, the coordinate will display 	[F1] Input PT# [F4]	BACK SIGHT PT# =F002_ ALPH SPC CLR ENT
[®] Press [F4] (YES) key.	[F4]	N: 22.000m E: 123.210m Z: 100.000m
(7) Collimate backsightpoint, press [F3] (YES)key. ※3)The display returns to BS	[F3]	>OK? [NO] [YES] BACKSIAHT HL :179° 59′ 07″ >Sight?
menu, press [ESC] return to Data Collect main menu.		dHD YES NO BS# >F002 PCODE : Ref.Hr: 0.000m INPT BS MEAS 0SET

※1) The coordinate data can be searched by press [F2](LIST)key.※2) Press [F3] key, backsight setting mode will be switched among NEAZ/AZ/PT#.

3) Press [F1](dHD) to measure the horizontal difference between calculated Backsight and true backsight.

2) Setting the direction angle

Make sure the mode is Data Collect.

Operating procedure	Operation	Display
 Make sure the displaying is Data Collect menu. 	[F2]	COLLECT $1/2 \downarrow$ F1: OCC. PT# INPUT F2: BACKSIGHT F3: FS/SS F4: SELECT A FILE
② Press [F2](BACK SIGHT) key.	[F3]	BS# > PCODE: Ref.Hr: 0.000m INPT 0SET MEAS BS
③Press[F4](BS) key. ※1)	(123)	BACK SIGHT PT# :
(4)Press [F3] twice to	[F3]	INPT LIST NEAZ ENT
enter AZ inputting menu.		BACK SIGHT HR:
⑤ Press[F1] key, input the direction angle.	[F1] [186.5600]	INPT PT# ENT
186°56'00″ Press [F4] key.	[F4]	BACK SIGHT HR=186.5600_
6 Collimate backsight	Collimate	CLR ENT
point, press [F3]key. The display returns to BS menu.	backsight point [F3]	BACKSIAHT HL:186° 56′ 00″

7.6 Operational Procedure of "Data Collect" Make sure the mode is Data Collect.

Operating procedure Display Operation Press [F3] (FS/SS) key. (1)[F3] PT# > PCODE: 0(2)Press [F1] key and input [F1] Ref Hr · 0.000mINPT SRCH MEAS ALL PT#, PCODE, Ref.Hr. Press [F3](MEAS)key. PT# :F021 [F3] ×1) PCODE : AGEO Ref Hr · 1 000m VH HD NEZ OFST (3) There are four modes 0° 00′ 00″ HR: can be selected, press [F2] HD: m VD -< [F2](HD) key, HD/VD <Measuring> data will be measured. $(\times 2) \times (3)$ 58° 14′ 22″ НΑ・ HD 56,461 m VD∙ 5.625 m (4)[F3](YES) [F3] Press to >OK [YES] [NO] record the measured data to memory.&4) PT# ·F022 [F4] The display changes to (5)PCODE ·AGEO Ref.Hr: 1.000m previous menu, and it is INPT SRCH MEAS ALL ready to measure next point. PT# is 180° 05′ 18″ HR: automatically HD: m VD -< incremented. Press [F4] <Measuring> (ALL) key to measure next point in the same measuring mode(HD) with previous point. 35)

% 6)	

%1) When the mark ">" is located PCODE, PCODE can be input directly, or recall by inputting a register number linked with PCODE Library. To show the list of PCODE library, press the [F2] (SRCH)

 \approx 2) VH means the measured data is in angle format, the HD/SD means the data is in angle and distance format, NEZ means the data is in coordinate format.

3 In DATA COLLECT/CONFIG/F1:HD/SD menu, if current setting is SD, here SD is displayed to be set

%4) In DATA COLLECT/CONFIG/F3:DATA CONFIRM menu, if current setting is NO, this asking screen will not display and the measured data will be recorded automatically.

※5) Press F4 (ALL) to measure next point, the PT# will increase one automatically, PCODE and the Ref.Hr, and distance measurement mode will not change, according to your need to edit every item before selecting ALL.

%6) While executing the DATA COLLECT mode, you can search the recorded data.

• While executing the DATA

COLLECT mode, press [F2](SRCH) key.

• Select one of three search methods by pressing [F1] to [F3] key

The operation is same as the "SEARCH" in the MEMORY MANAGER mode.

PT# :F022 ID :AGEO Ref.Hr : 1.000m INPT SRCH MEAS ALL

MEAS.DATA SEARCH F1:FIRST DATA F2:LAST DATA F3:PT# DATA

7.7 Setting PCODE for measured point 7.7.1 Entering PCODE / ID using PCODE Library

While executing the DATA COLLECT mode, you can enter PCODE /ID from PCODE Library.

Operating procedure	Operation	Display
①Move the arrow to the PCODE		PT# :F023 PCODE > Ref.Hr : 0.000m INPT SRCH MEAS ALL
 Press [F1]to enter a register number linked with PCODE library and press the [F4](ENT) key. (Example) Register number, 12 = AGEO 	[F1] Input ID of PCODE [F4]	PT# :F023 PCODE =12_ Ref.Hr : 0.000m NUM SPC CLR ENT PT# :F023 PCODE :AGEO Ref.Hr > 0.000m INPT SRCH MEAS ALL

7.7.2 Entering PCODE / ID from the list of PCODE You can also enter PCODE / ID from the list of PCODE.

Operating procedure	Operation	Display
①Move the arrow to the PCODE, press [F2](SRCH)	[F2]	PT# :F023 PCODE > Ref.Hr : 0.000m INPT SRCH MEAS ALL
(2) By pressing the following keys, the register number will increase or decrease. [▲]or[▼]:Increasing or decreasing one by one [◀] or ▶]: By ten increasing or Decreasing. *1)		>001:TREE 002:SYG EDIT CLR ENT 011:DKIID >012:AGEO 013:IOOF EDIT CLR ENT PT# :F023
Press [F4] (ENT) to confirm.	[F4]	PCODE >AGEO Ref.Hr > 0.000m INPT SRCH MEAS ALL

%1) To edit the PCODE library, press the [F1](EDIT) key.

To delete the PCODE registered with shown an arrow, press the [F3] (CLR) key.

PCODE can be edited in DATA COLLECT menu 2/2 or MEMORY MANAGER menu 2/3.

7.8 Data Collect Offset Measurement mode

For these series of total stations, Offset measurement has four measuring methods:

- 1. Angle offset measurement
- 2. Distance offset measurement
- 3. Plane offset measurement
- 4. Column offset measurement
- 7.8.1 Angle offset measurement

This program is used to measure the point where is difficult to set prism. Place the prism at the same horizontal distance from the instrument as that of point A0 to measure.

②Press the [F4] (OFST) key.③Press the [F1] (angle	[F4] [F1]	OFFSET F1: ANG. OFFSET F2: DIST. OFFSET F3: PLANE OFFSET F4:COLUMN OFFSET
④Collimate the prism,press [F3] to measure	Collimate prism	ANGLEOFFSETHR:120° 30′ 40″HD:m>Sight?YESNO
distance.	[F3]	ANGLE OFFSET HR: 120° 30′ 40″ HD*[3] -> m >Sight? <measuring></measuring>
(5)Collimate point A0 using the horizontal motion clamp and horizontal tangent screw.	Collimate A0 [F3]	ANGLE OFFSET 1/2 HR: 20° 00′ 00″ HD 1m VD 2m SD 3m [YES] [NO]
Press [F3] (YES) to confirm, it'll be back to the previous menu.	[F3]	OFFSET F1: ANG. OFFSET F2: DIST. OFFSET F3: PLANE OFFSET F4:COLUMN OFFSET

7.8.2 Distance Offset Measurement

The measurement of an object point apart from a prism is possible by inputting offset horizontal distance of front or back/right or left.

When measuring coordinates of ground point A1: set the instrument height and prism height. When measuring A0: set instrument height only.

Make sure the mode is Data Collect.

Operating procedure	Operation	Display
①Press the [F3] (MEAS) key	[F3]	PT# :F003 PCODE >0 Ref.Hr: 0.000m INPT SRCH MEAS ALL VH HD NEZ OFST
②Press the [F4] (OFST) key.	[F4]	OFFSET F1: ANG. OFFSET F2: DIST. OFFSET F3: PLANE OFFSET F4:COLUMN OFFSET

③Press the [F2] key (DIST OFFSET).	[F2]	DISTANCE OFFSET INPUT RorL HD HD: m CLR ENT
④Enter Right or Left distance offset value; press [F4] to confirm.	[F4]	DISTANCE OFFSET INPUT RorL HD HD=1_ CLR ENT
⑤Enter forward distance offset value; press [F4] to confirm.	[F4]	DISTANCE OFFSET INPUT FORWARD HD HD=2_ CLR ENT
 ⑥Enter the PT#, PCODE, Ref.Hr. Collimate the prism, select measuring mode as distance or coordinate, and then begin measure distance. 	Collimate prism [F2] Or [F3]	PT# >F003 PCODE :M Ref.Hr: 1.000m SD COOR N: 22.000m E: 123.210m Z: 100.000m >OK? [YES]
[®] Measured data is shown, press [F3] (YES), it'll be back to the previous menu.	[F3]	OFFSET F1: ANG. OFFSET F2: DIST. OFFSET F3: PLANE OFFSET F4:COLUMN OFFSET

7.8.3 Plane Offset Measurement

Measuring will be taken for the place where direct measuring can not be done, for example distance or coordinate measuring for a edge of a plane.

Three random points (P1, P2, P3) on a plane will be measured at first in the plane offset measurement to determine the measured plane, collimate the measuring point (P0), the instrument calculates and displays coordinate and distance value of cross point between collimation axis and of the plane.

%1) In case the calculation of plane was not successful by the measured three points, error displays. Start measuring over again from the first point.

 ≈ 2) Error will be displayed when the collimated direction does not cross with the determined plane.

7.8.4 Column Offset Measurement

It is possible to measure circumscription point (P1) of column directly, the distance to the center of the column (P0), coordinate and direction angle can be calculated by measuring circumscription points (P2) and (P3)

The direction angle of the column center is average of circumscription points (P2) and (P3).

Operating procedure	Operation	Display
①Press the [F3] key (MEAS)	[F3]	PT# :F005 PCODE >0
② Press the [F4](OFST) key	[F4]	Ref.Hr: 0.000m INPT SRCH MEAS ALL
-		VH HD NEZ OFST

③Press the [F4](column offset) key.		OFFSET F1: ANG. OFFSET F2: DIST. OFFSET F3: PLANE OFFSET F4:COLUMN OFFSET
(4) Collimate the center of column P1, and press the [F1] (MEAS) key to measure N times.	Collimate P1 [F1]	COLUMN OFFSET Center HD: m MEAS
⑤Collimate the left side of	Collimate	COLUMN OFFSET Center HD* 1.234m < Measuring>
the column (P2) and press the [F4] (SET) key.	P2 [F4]	COLUMN OFFSET Left HR: 12° 34′ 56″
 ⁽⁶⁾Collimate the right side of the column (P3) and press the [F4] (SET) key. ⁽⁷⁾The distance between the instrument and center of the column (P0) will be calculated and shown. ⁽⁸⁾Press the [F3] (YES) key 	Collimate P3 [F4]	COLUMN OFFSET Right HR: 12° 34′ 56″ SET
		COLUMN OFFSET HR: 12° 34′ 56″ HD: 1.234m > OK? [YES] [NO]
to confirm and record.	[F3]	OFFSET F1: ANG. OFFSET F2: DIST. OFFSET F3: PLANE OFFSET F4:COLUMN OFFSET

7.9 NEZ Auto Calculation

As measured data is collected, coordinates are calculated and stored for traverse or topo collection. Automatic making out function of coordinate data sets up in CONFIG of data collect. Refer to Section

7.10 "Setting Parameter of Data Collect [CONFIG.]".

As a default, coordinate data calculated will be saved in a file of the same name as the measurement data file. When the coordinate data file of the same name as the measurement data file does not exist, it will be generated automatically. It is possible to change a file for saving coordinate data in the DATA COLLECT Menu 2/2 (F1: SELECT A FILE).

To calculate a coordinate data, it is necessary to add a point number in Data Collect execution. When a coordinate data of the same point number exist already, it can be replaced with the new data by confirming display.

• Coordinates will be calculated using the grid factor. To set the grid factor, see Section 8.6"Setting the GRID FACTOR"

7.11 Setting Parameter of Data Collect [CONFIG.]

In this mode, the following settings of data collect mode are possible

e setting hen		
Menu	Selecting Item	Contents
F1:HD/SD	HD/SD	Select the distance measurement
		mode Horizontal Distance or Slope
		distance.
F2:MEAS	N TIMES/S	Select to set measurement mode for
ORDER	TIMES/REPEAT	distance measurement.
F3:DATA	YES/NO	It is possible to confirm the result of
CONFIRM		measuring data before the data is
		recorded.
F1:COLLECT	Edit→Meas/	Select the procedure of data
ORDER	Meas→Edit	collection.
		$[EDIT \rightarrow MEAS]:$
		Measurement is carried out after
		entering other data.
		[MEAS→EDIT]:
		Measurement is carried out before
		entering other data.
F2:NEZ	ON/OFF	It is possible to calculate coordinate
AUTO.CALC		value of data collected and store it
		into coordinate data file in every
		data collection.

• Setting Items:

• How to Set items

Example Setting: DATA CONFIRM: YES

Operating procedure	Operation	Display
①The instrument in Data Collect mode.		COLLECT 1/2↓ F1: OCC. PT# INPUT F2: BACKSIGHT F3: FS/SS F4: SELECT A FILE
②Press [♥] to enter collect menu 2/2.	[♥]	COLLECT 2/2 F1 PCODE INPUT F2 CONFIG
③Press [F2]to show CONFIG menu.	[F2]	SET ↓ F1: HD/SD F2: MEAS ORDER F3: DATA CONFIRM F4: COLLECT ORDER
④Press [F3] (DATA CONFIRM).	[F3]	Data Confirm F1:YES [F2:NO] ENT
⑤ Press [F1](YES) key, then press [F4] key to confirm.	[F1] [F4]	Data Confirm [F1:YES] F2:NO ENT

8. Coordinate Layout

Layout mode has two functions which are setting of layout points and setting new points using coordinate data in the internal memory. Also, if the coordinate data is not stored in the internal memory, this can be input from key board. The coordinate data is loaded from PC to the internal memory via RS-232C.

The coordinate data

The coordinate data is memorized into a file, the memory has three recorded parts, one is for measured data, another is for coordinate data, and the last one is for PCODE data.

For the internal memory, refer to Chapter 10 "Memory Manager Mode"

1) When turning off the power, ensure that you are in the main menu screen or angle measurement mode. This ensures completion of the memory access process and avoids possible damage of the stored data.

2) It is recommended for safety to charge the battery beforehand and prepared fully charged spare batteries.

8.1 Layout procedures

1) Selecting a file for layout.

2) Input Occ. point.

3) Input backsight point or backsight angle.

4) Input or pick-up (from internal memory) the coordinate data for layout point. Start layout.

8.2 Selecting or creating a coordinate data file

You can execute a Layout from selected coordinate date file.

Here one existing coordinate data file can be selected; also you can input a new file name to create one new file for coordinate layout

Operating procedure	Operation	Display
①Press [MENU] key, the instrument will be in MENU mode.	[MENU]	MENU 1/2↓ F1:DATA COLLECT F2:LAYOUT F3:MEMORY MGR. F4:PROGRAMS
②Press [F2] key, to enter file selecting menu.	[F2]	SELECT A C.FILE FN: INPT LIST SKIP ENT
③Press [F2] key to display the list of coordinate data file.※1) ※2)	[F1]	>*1 /C0002 1SV /C0000 TOP LAST SRCH ENT
 ④Scoll file list by pressing the [▲]or[♥]key and select a file to use. ※3) ⑤Press [F4] key, the file will be selected. Instrument enters Layout Menu. 	[▼] [F3]	*1 /C0002 > 1SV /C0000 S /C0000 TOP LAST SRCH ENT Layout 1/2 ↓ F1: OCC. PT# INPUT F2: BACKSIGHT F3: LAYOUT F4: SELECT A FILE

※1) If you want to input file name directly, press[F1]key to enter.※2) If you input a file name that it is not found in memory, a new coordinate file with input name will be created automatically.

3 When a file has been selected already, mark ."*" is indicated on left of current file name.

• It is possible to select a file from Layout 1/2, menu in the same way.
8.3 Occupied Point Setting

1) Setting the coordinate data from the internal memory.

Example: Confirm the coordinate data file has been selected already

Operating procedure	Operation	Display
①The instrument be in LAYOUT mode.		Layout 1/2↓ F1: OCC. PT# INPUT F2: BACKSIGHT F3: LAYOUT F4: SELECT A FILE
②Press [F1] key.	[F1]	OCC. PT PT# :
③Press [F2] key.	[F2]	INPT LIST NEZ ENT
 ※1) ④Press [▲] or [▼] key to select PT#. ※2) ※3) Press [F4] key to 	[F4]	[WS] > 2 1 VIEW SRCH ENT
confirm. ⑤ Press [F4] key to select YES.	[F3]	N 5.620m E 4.210m Z 1.250m >OK? [NO] [YES]
 ⑥Input Ins.Hi. Range:-999.999~ +999.999m Press [F4] key. 	[F4]	INSTRUMENT HEIGHT INPUT Ins.Hi =1.000 m CLR ENT

%1) Direct input PT#: Press [F1] key and input PT#.

2) The selected coordinate data can be viewed by press[F1](VIEW) key.

3 The coordinate data can be searched by press[F2](SRCH).

2) Input the point number of occupied point directly

Operating procedure	Operation	Display
①The instrument be in LAYOUT mode.		Layout 1/2↓ F1: OCC. PT# INPUT F2: BACKSIGHT F3: LAYOUT F4: SELECT A FILE
②Press [F1] key.	[F1]	OCC. PT PT# : INPT LIST NEZ ENT
③Press [F1] key to enter	[F1]	OCC. PT
the point number, and	Enter	PT# =F023_
press [F4] to confirm.	PT# [F4]	ALPH SPC CLR ENT
4 The coordinate value		N 5.620m
will display.		E 4.210m
⑤ Press [F4] key to select YES.	[F3]	Z 1.250m >OK? [NO] [YES]
		INTRUMENT
[®] Input Ins.Hi.	Input	HEIGHT INPUT
Range:-99.999~	Inst.H	Ins.Hi=1.5 _
+99.999m	[F4]	CERTERN
Press [F4] key to confirm, instrument will back to Layout menu automatically.		Layout 1/2↓ F1: OCC. PT# INPUT F2: BACKSIGHT F3: LAYOUT F4: SELECT A FILE

8.4 Setting Backsight Point

1) Setting the coordinate data file from the internal memory

Make sure the instrument displays layout menu

Operating procedure	Operation	Display	
①Press [F2]	[F2]	BACKSIGHT	
(BACKSIGHT) key to set		PT#	
backsight point.		INPT LIST NEAZ ENT	
<pre>②Press [F2] key to view data file.</pre>	[F2]	[WS] > 2 1	
③Press [▲] or [$\mathbf{\nabla}$] key to	[▼]	VIEW SRCH ENT	
select PT#. Press [F4] key. ④The coordinate value will display. Press [F4] key to select YES. ※3)	[F4] [F4]	N 1.000m E 2.000m Z 1.100m >OK? [NO] [YES]	
⑤Collimate backsight, press [F3] key and return back the layout menu. ※4)	Collimate backsight [F3]	BACKSIGHT HR:283° 25′ 33″ >Sight? dHD YES NO	
		Layout 1/2↓ F1: OCC. PT# INPUT F2: BACKSIGHT F3: LAYOUT F4: SELECT A FILE	
*1) Press [F1](VIEW) key the coordinate data values can be displayed.			
%2) Press [F2](SRCH) key the coordinate data can be searched by entering			

*2) Press [F2](SRCH) key the coordinate data can be searched by entering PT#.

3) Press [F4](NO) key return to points list menu.

%4) Press[F2](dHD) to measure the difference between calculated backsight and true backsight

2) Direct key input of setting angle.

Make sure the instrument displays layout menu

Operating procedure	Operation	Display
①Press [F2] key.	[F2]	BACKSIGHT PT# : INPT LIST NEAZ ENT
②Press[F3](NEAZ) key. ※1) ③Press [F3] (AZ) key.	[F3]	BACKSIGHT N > 0.000m E : 0.000m INPT AZ ENT
(4)Press [F1] key and enter	[F3]	BACKSIGHT HR:
setting angle.	[F1]	INPT PT# ENT
Press [F4] key.	[123.16 18]	BACKSIGHT HR =123.1618
⑤Collimate backsight, press	[F4]	CLR ENT
[F3] key and return back the layout menu.	Collimate backsight [F3]	BACKSIGHT HR :123° 16′ 18″ >Sight? YES NO

%1) With each pressing of [F3] key, switched among PT#, NE (coordinate) and AZ (backsight angle).

8.5 Executing a Layout

The following methods can be selected for executing a layout.

1) Recalling points from internal memory by point number.

2) Direct key input of coordinate values.

Example setting: recalling point from internal memory

Operating procedure	Operation	Display
①Make sure the displaying is layout menu.		Layout 1/2↓ F1: OCC. PT# INPUT F2: BACKSIGHT F3: LAYOUT F4: SELECT A FILE
⁽²⁾ Press [F3] (LAYOUT) key.	[F3]	LAYOUT PT# :
③Press [F2] (LIST) key. ※1)	[F2]	INPT LIST NEZ ENT [AGEOMA] > 2 1
 ④Press [▲] or [▼] key to select PT#. Press [F4] key. ※2) ※3) ⑤Press [F4] (YES) key to confirm the coordinate. ※4) 	[F4]	VIEW SRCH ENT N: 2.615m E: 3.186m E: 3.186m Z: 1.268m >OK? [NO] [YES]
⑥Input target height Ref.Hr. ⑦Press [F4] key.	[F4]	REF HT INPUT Ref.Hr=1.75_ CLR ENT
HR: calculated horizontal angle of the layout point HD: Calculated horizontal distance from the instrument to the layout point (a)Collimate the prism, press [F1] (ANG) key. HR: measured(actual) horizontal angle	[F1]	CACULATED HR: 44° 38′ 29″ HD: 173.464m ANG DIST PT# : HR : 44° 38′ 29″ dHR: 30° 38′ 29″ DIST CORD

dHR: Horizontal angle to be		
turned to the layout		
point=Actual horizontal		
angle-Calculated horizontal		
angle.		
Correct direction when dHR=		
0°00'00″		
Press [F1] (DIST) key to	[F1]	
measure distance.		
dHD: Horizontal distance to		PT#
be moved to the layout		dHR: 346° 08′ 20″
point=Actual horizontal		dHD: -7.810 m
distance-Calculated		dZ: -0.022 m
horizontal distance.		DIST MODE ANG NEXT
dZ: Vertical distance to be		
moved to the layout		
point=Actual vertical		
distance-Calculated vertical		
distance.		
Press the [ESC] to stop		
measure.	[ESC]	PT#
		dHR: 000° 00′ 12″
		dHD: -0.001 m dZ: -0.002 m
		DIST MODE ANG NEXT
When the display value dHR,		
dHD and dZ are equal to 0,		
the layout point is		PT# :
established. %4) %5)		HR:44° 38′ 29″
		dHR: 30° 38′ 29″
⁽¹⁾ Press [F3] (ANG) key to		DIST CORD

setting screen, press [F3] (CORD) key again, the coordinate data is shown. Press [F2] mode key to setting the distance measuring mode.	[F3] [F3]	N: 56.287 m E: 986.321 m Z: 123.345 m DIST MODE ANG NEXT
⁽³⁾ Press [F4] key to set next layout point.		LAYOUT PT#: INPT LIST NEZ ENT

%1) If you want to input PT# directly, press [F1]key and enter PT#.

%2) The coordinate data can be viewed by press [F1]key.

%3) The coordinate data can be searched by press [F2]key and enter PT#.

※4) As normal, rotating the horizontal circle and make dHR reach 0. Setting the prism as this direction. Make the dHD and dZ reach 0 by distance measured.
※5) Cut&Fill displaying function is available. Refer to Chapter 13 "Selecting Mode".

NOTE: After layout, collimate the layout point and measure it's coordinate, and then confirm its accuracy, the measurement mode can be selected.

8.6 Setting the GRID FACTOR

Calculation Formula

1. Elevation Factor = R/(R+ELEV)

R: The average radius of the earth

ELEV. : The elevation above mean sea level

2. Scale Factor

Scale Factor: Scale Factor at the surveying station

3. Grid Factor

Grid Factor=Elevation Factor×Scale Factor

Distance Calculation

1. Grid Distance

HDg=HD ×Grid Factor

HDg: Gird distance

HD: Ground distance

2. Ground Distance

HD= HDg/ Grid Factor

After the Grid Factor setting is finished, it is used for layout and other coordinate measurement programs.

Operating procedure	Operation	Display
①Displayed the layout menu 2/2.		Layout 2/2 † F1: GRID FACTOR
②Press [F2] key.	[F2]	GRID FACTOR =1.000000 > MODIFY? YES NO

Operating procedure	Operation	Display
③Press [F3]key.※1)	[F3]	GRID FACTOR ELEV. =0_ 0 m SCALE : 1.000000 CLR ENT
(4)Enter Elevation. ※2) Press [F4] to confirm.	enter Elevation [F4]	GRID FACTOR ELEV. = 1000 m SCALE: 1.000000_ CLR ENT
 ⑤Enter Scale Factor. Press [F4]key.※3) ⑥Press [F4] key. Grid Factor is displayed, and then returns to Layout menu automatically. ※4) 	enter Scale Factor [F4]	GRID FACTOR =1.000685
(1) Press[F4] key if don't need to change the Grid Factor.		

*3) Scale enter range:0.990000 ~ 1.010000.
*4) In Resection program, the Grid Factor need be reset to calculate the

error, refer to the procedures from step 2 to step 5 to do that.

9. Application Measurement (Programs)

9.1 Remote Elevation Measurement (REM)

Two mode of with prism and without prism can be selected to measure the vertical height from target to prism or ground point, the prism or ground point should be on the vertical line from the target.

1) With prism height (h) input (Example: h=1.5m)

Operating procedure	Operation	Display
①Press the [MENU] key to menu mode.	[MENU]	MENU 1/2↓ F1:DATA COLLECT F2:LAYOUT F3:MEMORY MGR. F4:PROGRAMS
②Press the [F1] (PROGRAMS) key.	[F1]	PROGRAM 1/2↓ F1: REM F2: MLM F3: Z COORD F4: AREA

Operating procedure	Operation	Display
③Press the [F1] (REM) key	[F1]	REM
to REM program.		F1: INPUT R.HT
		F2: NO R.HT
④Press the [F1] key to		
select the first mode:	[F1]	REM-1
INPUT R.HT.		<step-1></step-1>
		Ref.= 0.00_m
5Enter prism height, press	Enter	CLR ENT
[F4] key to confirm.	R.HT	REM-1
	[F4]	<step-2></step-2>
⁽⁶⁾ Collimate prism, press		HD: m
[F1] (MEAS) key to	Collimate	MEAS
measure distance, the	Р	REM-1
horizontal distance (HD)	[F1]	<step-2></step-2>
between instrument and		HD: * 21.232 m <measuring></measuring>
prism will be shown.		
7 The vertical distance		REM-1
(VD) from prism to ground		VD: 1.5 m
will be decided.		HT HD
[®] Move telescope, the VD	Collimate	
will upgrade in real-time.	target	REM-1
Collimate target, vertical		VD: 1.602 m
distance (VD) from targetto		HT HD
ground will be decided. \times		
1)		

✗ 1) Press [F2](HT) to enter the new prism height. Press [F3] (HD) to measuring the horizontal distance again.

To return to PROGRAMS Menu, press the [ESC] key.

2) Without prism height input

Operating procedure	Operation	Display
①Press the [MENU] key to		PROGRAM 1/2
menu mode.		FI: REM F2: MLM F3: Z COORD F4: AREA
2 Press the [F1] (REM)	[F1]	
key.		REM F1: INPUT R.HT
③Press the [F2] (NO	[F2]	F2: NO R.HT
R.HT) key.		
(4)Collimate prism	Collimate	REM-2
Press the [F1] (MEAS)	Р	<step-1></step-1>
key, measuring starts,	[F1]	HD: m
horizontal distance (HD)		MEAS
between instrument and		REM-1
prism will be decided.		<step-1></step-1>
		HD: * 6.888 m <measuring></measuring>
(b) Vertical angle(VZ) will	(1741	REM-2
be shown	[F4]	$\langle \text{STEP-2} \rangle$
⁽⁶⁾ Press the [F4](SE1) key.		SET
The prism position will be		
decided.		REM-2
(7)Collimate ground point	Collimate	VD: 0.000m
G.	G	VZ HD
The position of point G	[F4]	
will be decided. *1		REM-2
⑧Collimate target K.		VD. 6.590m
Vertical distance (VD) will	Collimate	VD: 0.580m
be shown. *2	K	

*1) To return to procedure 4, press the [F3](HD) key.

To return to procedure 5, press the [F2](VZ) key.

*2) To return to PROGRAMS Menu, press the [ESC] key.

9.2 Missing Line Measurement (MLM)

9.2.1 Missing Line Measurement

Measurement for horizontal distance (dHD), slope distance (dSD), elevation (dVD) between two targets. MLM has two modes:

1. MLM-1 (A-B, A-C): Measurement is A-B, A-C, A-D.....

2. MLM-2 (A-B, B-C): Measurement is A-B, B-C, C-D.....

MLM-1

MLM-2

[Example]1. MLM-1 (A-B, A-C)

Procedure of MLM-2 (A-B, B-C) mode same as MLM-1 mode

Operating procedure	Operation	Display
①Press the [MENU] key to menu mode.		PROGRAM 1/2 ↓ F1: REM F2: MLM
②Press the [F2] (MLM)	[F2]	F3: Z COORD F4: AREA
key.		MLM F1:USE FILE
③Press the [F1] or [F2] key	[F2]	F2:DON' T USE
to select using coordinate		

file.		
[Example:F2 : DON'T		GRID FACTOR F1 · Use
USE]		F2:Not Use
④ Press the [F1] or [F2]	[F2]	
key to select using		
GRID FACTOR.		MLM
[Example:F2 :Not Use]		F1:MLM-1 A-B ,A-C
5 Press the [F1] key to		F2:MLM-2 A-B,B-C
select the first measure		
mode: MLM-1 A-B, A-C.		MLM-1(A-B, A-C)
⁽⁶⁾ Collimate A, press the	Collimate	<step-1></step-1>
[F1](MEAS) key to	А	HD: m
measure distance, %1)	[F1]	MEAS KHI COOK
⑦Horizontal distance will display.		MLM-1(A-B, A-C) <step-1> HD:* 6.688m <measuring></measuring></step-1>
③Collimate B, press the [F1] (MEAS) key to measure distance	Collimate B [F1]	MLM-1(A-B, A-C) <step-2> HD: m MEAS RHT COOR MLM-1(A-B, A-C)</step-2>
		<step-2></step-2>
		HD: * 2.380m
@Horizontal distance		
(dHD) relative elevation		MLM-1(A-B, A-C) dHD: 5.726m
(dVD) and slope distance		dVD: 1.722m dSD: 15.890m
(dSD) between A and R		COOR
can be shown		

Press [F3] to proceed with next point.		
① To measure the distance	[F3]	MLM-1(A-B, A-C)
between points A and C, Collimate point C (Prism		<step-2> HD: m MEAS RHT COOR</step-2>
C) and press the [F1] (MEAS) key. Horizontal		MLM-1(A-B, A-C)
distance (HD) between the instrument and prism C will	Collimate C	<step-2> HD: * 16.536 m</step-2>
be shown. ※2)	[F1]	<measuring></measuring>
(11) To measure the distance between points A and D,		
repeat procedure 11.		
%1) Press the [F2] key to input prism height.		
2) Press the [ESC] key to return to previous Menu.		

9.2.2 USE FILE and GRID FACTOR

Operating procedure	Operation	Display
①Make sure the display is in [PROGRAMS] mode. ②Press the [F2] (MLM)	[F2]	PROGRAM 1/2↓ F1: REM F2: MLM F3: Z COORD F4: AREA
key. ③ Press[F1](USE FILE) key	[F1]	MLM F1:USE FILE F2:DON' T USE
Select a coordinate file.		SELECT A C.FILE FN:1SV INPUT LIST ENT
⁽⁵⁾ Press [F1] (F1:USE) to confirm.	[F4]	GRID FACTOR F1: USE F2: Not Use
⁽⁶⁾ Press [F3] (YES) to confirm the Grid Factor.	[F3]	GRID FACTOR =1.0000000 >OK? [YES][NO]
⑦Repeat 9.2.1 step ④ - ①		MLM F1:MLM-1 A-B ,A-C F2:MLM-2 A-B,B-C

9.2.3 Use coordinate for MLM program

It is possible to input coordinate value directly or calculate from coordinate data file

Operating procedure	Operation	Display
To use coordinate data file,		
select "USE FILE" in step		
③ of chapter 9.2.1.		
		MLM-1(A-B, A-C)
		<step-1> HD: m</step-1>
(1) Press the [F3](COOR)	[F3]	MEAS RHT COOR
key.		
Coordinate direct key		MLM-1(A-B, A-C) N> 0.000m
input display will be		Z: 0.000m
shown.		INPT PT ENT
③Press the [F3](PT#) key	[F3]	MLM-1 (A-B, A-C)
to use coordinate data file.	Input	F1#.
Point number input display	coordinate	INPT LIST HD ENT
will be shown.	or PT#	
Input the point number	[F4]	
PT# or select coordinate in		
LIST.		
④ Pressing the [F3](HD)	[F3]	MLM-1(A-B, A-C)
key, the display will return		<step-2></step-2>
to next point setting menu		HD: m
		MEAS RHI COOK

9.3 Setting Z Coordinate of Occupied Point

Input occupied point coordinate data, with known point actual measuring data, Z coordinate of occupied point is calculated and reset again. Known point data and coordinate data can recalled from the coordinate data file.

1) Setting coordinate data file (if you don't recall data from memory, please ignore this operation step)

Operating procedure	Operation	Display
①Display PROGRAMS menu on page 1.		PROGRAM 1/2↓ F1: REM F2: MLM F3: Z COORD F4: AREA
2 Press the [F3] (Z COORD) key	[F3]	Z COORD. SETTING F1: USE FILE F2: DON'T USE
③Press the [F1] (USE FILE) key.	[F1]	SELECT A C.FILE FN: INPT LIST ENT
 ④Press the [F2] (LIST) key, the list of coordinate data files are shown.※1) ⑤press [▲] or [▼] keys, 	[F2]	>&1 /C0002 1SV /C0000 TOP LAST SRCH ENT
the cursor will move up or down one by one, select a file. 2)	[▼]	&1 /C0002 >1SV /C0000 TOP LAST SRCH ENT

[®] Press the [F4] key to confirm.	[F4]	Z COORD. SETTING F1: OCC. PT INPUT F2: REF. MEAS
---	------	--

%1) Press the [F1](INPT) key to enter file name directly.

 ≈ 2) Press the [F3](SRCH) key to scan the coordinate data in the selected file

2) Setting the Coordinate of occupied point

Operating procedure	Operation	Display
①Make sure the displaying is in Z Coordinate mode ②Press the [F1] key (OCC.	[F1]	Z COORD. SETTING F1: OCC. PT INPUT F2: REF. MEAS
PT INPUT)		OCC.PT PT#:
③Press the [F2](LIST) key	[F2]	INPT LIST NEZ ENT
to display coordinates list.%1) %2)		[S] >2 1
(4) Press [▲] or $[♥]$ keys, the cursor will move up or		VIEW SRCH ENT
down one by one, select a	[F4]	N: 1002.362m
point. Press the [F4] key to confirm %3)		E: 566.231m Z: 100.002m
⁽⁵⁾ The coordinate value will		ZOK: NO IES
be shown, press the [F4] (YES) key to confirm.	[F3]	INSTRUMENT HEIGHT INPUT
[®] Input the instrument		Ins.HT=1.000 m

height and press the [F4] to confirm.	Enter I.HT [F4]	Z COORD. SETTING F1: OCC. PT INPUT F2: REF. MEAS

%1) Press the [F1] (INPT) key to input point number directly.

2) Press the [F3] (NEZ) key to input coordinate data directly.

3) Press the [F1] (VIEW) key to scan the coordinate data in the selected file.

3) Z Coordinate Calculation from Known Point Measuring Data Example: Using coordinate data file

Operating procedure	Operation	Display
 The display return to Z Coordinate program after selected the coordinate for occupied point. Press the [F2] key. (REF. MEAS) 	[F2]	Z COORD. SETTING F1: OCC. PT INPUT F2: REF. MEAS N001# PT#:
 ③Press [F2] (LIST) key to open the data list, select a point, press [F3] (YES) to confirm. ④Press [F1](INPT) to input prism height R.HT Press [F4] to confirm. 	[F2] Select PT# [F3] [F1] Input R.HT [F4]	INPT LIST NEZ ENT N: 1002.362m E: 566.231m Z: 100.002m >OK? NO YES REF HT INPUT Ref.Hr=1.500_ m CLR ENT

(5)Collimate prism	Collimat	
	D	REF HT INPUT
Press the [F3] (YES) key to	e P	
start measure distance.	[F3]	Ref. 1.5m
		> SIGHT? YES NO
		> Measuring
⁽⁶⁾ Press the [F4] (CALC)	[F4]	HR: 142° 23′ 59″
key the result will be		HD: 15.8m
al a serve		VD: 10.3m
snown.		NEW CALC
%1) Z:Z coordinate		
dZ: standard error		Z COORD. SETTING
⑦Press the [F4] (SET) key,		dZ 0.000m
the result will be set as the Z	[F4]	BS SET
coordinate of occupied		
point. Backsight point		BACK SIGHT
measuring screen will be		HR: 180° 00′ 00″
shown. %2)		> Sight? YES NO
(8)If press the [F3](YFS)	[F3]	
leave azimuth angle will be	[1.5]	PROGRAM 1/2↓ F1: RFM
key, azimuth angle will be		F2: MLM
set, the display returns to Z		F3: Z COORD F4: AREA
coordinate program mode		
×1) Press the [E1](NEW) box	to magging	more points to improve precision

%1) Press the [F1](NEW) key to measure more points to improve precision, repeat the steps from 2 to 5.

(2) Pressing the [F3] key, the display will be changed alternately.

9.4 Area Measurement

This mode calculates the area of a closed figure.

There are two area calculation methods as follows.

- 1) Area Calculation from Coordinate data file
- 2) Area Calculation from Measured data
- Area is not calculated correctly if enclosed lines cross each other.

• It is impossible to calculate what a mix of coordinate file data and measured data.

• If the coordinate data file does not exist, the area calculation from measured data is done automatically.

• The numbers of points used to calculate are not limited.

Operating procedure Display Operation PROGRAM 1/2 ↓ (1)Enter PROGRAMS menu. F1 REM F2: MLM F3: Z COORD F4: AREA ⁽²⁾Press the [F4] (AREA) key. [F1] AREA ③Press [F1] (KNOWN F1:KNOWN DATA DATA) key F2:MEASURE ④ Press the [F1] (INPUT) [F1] key and enter the file name. SELECT A C.FILE Initial display will be shown. FN:FY The top of the file data is set [F1] INPT LIST --- ENT as the first point of area Enter the automatically. File name [F4]

9.4.1 Area Calculation from Coordinate Data File

To set specify point, press the [F1](PT) key.

×2) To show the list of the coordinate data in the file, press the [F2](CALL) key.

*****3) Every time press the [F3](UNIT) key to switch area unit.

9.4.2 Area Calculation from measured data

Operating procedure	Operation	Display
①Enter PROGRAMS menu.		PROGRAM 1/2 ↓ F1: REM F2: MLM F3: Z COORD F4: AREA
②Press the [F4](AREA) key.	[F1]	AREA F1:KNOWN DATA F2:MEASURE

(3) Press [F2] (MEASURE) key.	[F1]	AREA F1:USE GRID FACTOR F2:NOT USE
(4) Press the [F1] or [F2] key to select using GRID FACTOR. [Example:F2 : DON'T USE]	[F2]	AREA 0000 m.sq MEAS UNIT AIM
(5) Collimate a prism and press the [F1] (MEAS) key. Measuring starts.	[F4]	AREA 0001 N: 154.894m E: 45.685m Z: 10.588m <measuring></measuring>
© Collimate next point and press the [F1] (MEAS) key.	[F1]	AREA 0002 m.sq
		MEAS UNIT AIM
When 3 or more points are measured, the area		
surrounded by the points is calculated and the result		AREA 0003 56.741 m.sq
will be shown. ×1)		MEAS UNIT AIM
% 1) Every time press the [F3](UNIT)	key to switch area unit.

9.5 Point to Line

This mode is used to obtain the relative coordinate data from the coordinate system: origin point A (0, 0, 0) and the line AB as N axis. Place the 2 prisms at the points A and B on the line, and place the instrument at unknown point C. After measuring the 2 Prisms, the coordinate data and the direction angle of the instrument will be calculated and restored.

Operating procedure	Operation	Display
1Make sure the displaying is		PROGRAM 2/2↑
in Program menu on page2.		F1: POINT TO LINE F2: NEW POINT
	[F2]	F3: ROAD
$\textcircled{0}\label{eq:press}$ the [F1] (POINT TO		
LINE) key.		
	Enter	INSTRUMENT
③Enter instrument height	INS.HT	Ins.Hi= 1.750_ m
Press the [F4] key to confirm.	[F4]	CLR ENT

(4) Enter the reflector height of	Enter	REF HT INPUT
Point A, [F4] (ENT) to	Ref.Hr	RefHr 0.000m
confirm.	[F4]	CLR ENT
⑤Collimate Point A(P1), press the [F3] to measure.	[F3]	POINT TO LINE MEAS. P1 HD: m >SIGHT? YES NO
		POINT TO LINE MEAS. P1 HD:* 15.632 m <measuring></measuring>
6 Enter reflector height of	Enter	REF HT INPUT
point B. Press the [F4] key to confirm	R.HT [F4]	Ref.Hr=2.500_ m CLR ENT
. ⑦Collimate Point B (P2), press the [F3] to measure.	Collima te A [F3]	POINT TO LINE MEAS. P2 HD: m >SIGHT? YES NO
(a) The measured results will be shown. The coordinate data and direction angle of the instrument are calculated and restored. The result (the distance between A and B) will be displayed.		POINT TO LINE MEAS. P1 HD* 78.840 m < Measuring> < Complete> DIST. (P1-P2) dHD: 8.080m 0.080m DSD: 0.080m 0.080m NEZ S.CO

9.6 Setting a new point

New point is required for example when a layout point cannot be sighted from existing control point.

9.6.1 Side short method

Set up the instrument at a known point, and measure the coordinate of the new points by the side short method.

Operating procedure	Operation	Display
 Make sure the displaying is in program menu on page2. 	[F3]	PROGRAM 2/2↑ FI: POINT TO LINE F2: NEW POINT F3: ROAD
② Press[F2](NEW POINT) key.		NEW POINT F1: SIDE SHORT F2: RESECTION
③Press [F1](SIDE SHORT) key.	[F1]	SELECT A FILE FN: INPT LIST ENT
④ Press [F2](LIST) key to display the list of coordinate	[F2]	>&1 /C0002 1SV /C0000 TOP LAST SRCH ENT
<pre>date file.※1) ⑤Scroll file list by pressing [▲] key or [▼]key and select a file to use.※2)</pre>	[▲] or [▼]	&1 / C0002 >1SV / C0140 S /C0000 TOP LAST SRCH ENT

(A) Prass that EA1(ENT) trav	[F4]	SIDE SHOT
© riess the[r4](EN1) key.		PT#=F125_
The file will be set.	[F1]	NUM ODCI CUD ENTE
	Enter	NUM SPC CLR ENT
O Press the[F1] key , and	PT#	REF HT INPUT
enter the new point name	[F4]	
PT#. Press the [F4] key.		Ref.Hr 0.000 m
	Enter	CLR ENT
⑧Enter R.HT in the same	Ref.Hr	REFLECTOR
way.	[F4]	HEIGHT INPUT
		Ref. 1.000 m
9Collimate the new point,	[F3]	>Sight? YES NO
and press the [F3](YES) key		$HR \cdot 12^{\circ} 34' 56''$
to start measure distance.		HD* <m< td=""></m<>
		VD: m
		>Measuring
⁽¹⁾ Press [F3](YES) key. The		< Complete >
coordinate value is stored into	[F3]	
COORD.DATA.file The input		N: 56.287m
menu for next new point is		E: 986.321 m 7: 123.345 m
		>REC? [YES] [NO]
displayed. P1# is		
automatically incremented		SIDE SHOT
		PT#: F126
		INPT SCR H FNT
		INTI SCRII ENI
*1) Press [F1](INPT) key and enter a file name.		

&2) The coordinate data can be searched by press [F3] (SRCH) key.

9.6.2 Resection method

Set up the instrument at a new point, and calculate the coordinate of the new point using the coordinate data of up to five known points and the measurements make to these points.

By following observation, resection is possible:

*Resection by distance measurement: 2 or more known points must be measured.

* Resection by angle measurement only: 3 or more points must be measured

NOTE: the new point can not be on the circum circle formed by the known points; otherwise the coordinate of new point is not correct.

Operating procedure	Operation	Display
①Make sure the displaying is in Program menu on page2.② Press [F2](NEW POINT)		PROGRAM 2/2↑ F1: POINT TO LINE F2: NEW POINT F3: ROAD
key. ③Press [F2] (RESECTION)	[F2]	NEW POINT F1: SIDE SHORT F2: RESECTION

key.	[F2]	
5		SKLECT A C.FILE
④ Select a coordinate file for		FN=AGEOMA_
known points.		ALPH SPC CLR ENT
⑤Enter the new point number.		
Press[F4] key. ※1	PT#	NEW POINT
	[F4]	P1#:45
	[F4]	INPT SRCH SKIP ENT
⁽⁶⁾ Enter the instrument height.		
Press [F4] key.	INS.HT	INSTRUMENT
	[F4]	Ins.Hi=1.500_ m
		CLR ENT
⑦Press[F1(INPT)]key and		
enter the known point 1. $\times 2$	[F1]	N001#
	PT#	г 1#
		INPT LIST NEZ ENT
⁽⁸⁾ Press F4(YES) to confirm the		
coordinate for point 1.		N: 99.925m E: 56.360m
	[F3]	Z: 9.563m
<pre> ⑨Enter reflector height. Press </pre>		REC? [NO] [YES]
[F4] key.		
	R. HT	REF HT INPUT
Ollimate the first known	[F4]	D (11 1 700
point 1, and press[F3] or		Ref.Hr=1.500_ m
[F4]key to select measuring		
mode. Measuring starts.		REF HT INPUT
		Ref.Hr=1.500_ m
(11)The second known point B is		>SIGHT? ANG DIST
waiting to confirm, entering		L
display will be shown.		

(12) Same as procedure $(5) - (10)$		
proceed to the second known		N002# PT#
point 2.		Ι Ι π
When two points have been		INPT LIST NEZ ENT
measured, the RESIDUAL		
ERROR will be calculated. 3)		
(13)Select GRID FACTOR for		SET GRID FACTOR
calculation of RESIDUAL		F1:USE LAST DATA
ERROR by pressing [F1] or	[F1]	F2:CALC MEASDATA
[F2] key. ※3)		
Example: [F1]		RESIDUAL ERROR
(14)Press the [F1](NEXT) key to	[F1]	dHD= 0.002m
measure other points.		dZ = 0.003m
Maximum five points can be		NEXT U.I. CALC
measured.		HR· 1° 23′ 45″
(15) Same as procedure (5)-10		HD: 1.234 m
proceed to the known point 3.		VD: 0.001 m
(16)The measured value is	[F4]	NEXT CALC
displayed. Press the [F4] (CALC)		Standard Dev
key. Standard error will be		=2.01 sec.
shown.		
(17)Press the [F2](NP) key.	[F2]	NP NEZ
Standard errors of each		SD(n) = 1.234m
coordinate will be shown.		SD(e) = 0.001 m
The display will be changed		SD(z) = 0.000m
alternately by pressing [F2] key.		NP NEZ
		N: 1.234m
(18) Press the [F4](NEZ) key.	[F4]	E: 0.001m
Coordinate data of the new		Z: 0.000m
point will be shown.		>KEU ! [YES] [NU]

new point as occupied point, the last measured known point as backsight.

The display returns to New Point menu. (4)

(1) When there is no need to memorize the new point data, press the [F3](SKIP) key.

(2) To enter the known point coordinate data by direct key inputting, press the [F3](NEZ)key.

3) RESIDUAL ERROR

dHD(Horizontal distance between two known points)=Measured value-Calculated value dZ=(Z coordinate of the new point calculated from known point A)-(Z coordinate of the new point calculated from known point B)

**(4) When [F3] key pressed in step 5, in this case, the new point data is not stored into the coordinate data file, only the value of occupied coordinate data changes to that of the calculated NEW POINT.

9.7 Road measurement

This program is especially designed for road layout measurement. It can

be used for horizontal curve layout. Normally one road is constituted by several elements, such as line, circle curve or Spline.

9.7.1 Input Element

Operating procedure	Operation	Display
①Make sure the displaying is in Program menu on page2.		PROGRAM 2/2↑ F1: POINT TO LINE F2: NEW POINT F3: ROAD
②Press [F3](ROAD) key.	[F3]	ROAD F1: Input Element F2: Road SetOut F3: Road Initialize
③Press [F1] (Input Element) key.	[F1]	Input Element F1: Start Point F2: Horizontal Curve
④ Press [F1] (Start Point) key to enter coordinates of first point.	[F1]	Start Point N=0.000_ E: 0.000m Pile 0.000m Spac 100.000m CLR ENT
⑤ Enter the pile number and space distance, then press F4 to confirm. ※1)	[F4]	Start Point N: 123.000m_ E: 456.000m Pile=1_ Spac Spac 100.000m CLR ENT
⑥It will be back the previous		

page, press F2(Horizontal	[F2]	
Curve) to input element of		F1: Start Point
curve.		F2: Horizontal Curve
(7)Press F1(Road data Input)	[F1]	r
kev	[11]	Horizontal Curve F1: Road data Input
Key.		F2: Road data View
(Press E1/Line)		
@Press F1(Line).	[171]	F1: Line
	[[[]]	F2:Circle F3:Spiral
		F4: Cross
(9)Enter the length and azimuth		
of line, then press F4 to		Line 1
confirm, it'll be back the	[F4]	$L=0.000_{m}$ m
previous menu.		CLR ENT
W Press F2(Circle), enter the		Circle 2
radius and length of circle, then		R 0.000 m
press F4 to confirm.	[F2]	L: 0.000 m
	[F4]	CLR ENT
(11)Press F1 or F2 to select the		L
direction of circle, after that	[F1]	Circle 2
press F4 to confirm, it'll be	or	R: 35.000 m
back the previous menu.	[F2]	L: 16.000 m Turn : LEFT
	[F4]	LEFT RIGH ENT

(12) Press F3(Spiral), enter the radius and length of spiral, then press F4 to confirm.	[F3] [F4]	Spiral R: 400.000 m L: 16.000 m Turn : LEFT Dire: In CLR ENT
(13) Separately press F1 and F2 to select the turn and direction of spiral, after that press F4 to confirm, it'll be back the previous menu.	[F1] or [F2] [F4]	Spiral R: 400.000 m L: 16.000 m Turn : RIGHT Dire: OUT IN OUT ENT
⁽¹⁴⁾ Press the [F1](NEXT) key to measure other points. Maximum five points can be measured.	[F4] [F4]	Cross N: 123.456 m E=654.321_ m CLR EI
(15) Input the radius and lengths of incoming spiral and outcoming spiral, then press F4 to confirm. If no need to input, directly press F3 to skip.	[F4]	R: 30.000 m L1: 10.000 m L2= 8.000_ m CLR I

3

3

4

ENT

CLR ENT

CLR ENT
[ESC]	F1: Line F2:Circle F3:Spiral F4: Cross
	Horizontal Curve F1: Road data Input F2: Road data View Road data View
[F1]	F1: FIRST DATA F2: LAST DATA
or [F2]	
	[ESC] [F1] or [F2]

%1) The pile space distance defaults to 100m.

9.7.2 Road Setout

Recall the input element to carry through road calculation and setout.

Operating procedure	Operation	Display
① Press [F2](ROAD SetOut) key.	[F2]	ROAD F1: Input Element F2: Road SetOut F3: Road Initialize
② Press [F1](OCC.PT# INPUT) key.	[F1]	Road SetOut F1: OCC.PT# INPUT F2: Road SetOut
③ Set up the station by using coordinate data or road data		OCC.PT# INPUT F1:COORD.DATA F2: Road Data
 Press [F1](COORD.DATA) to select coordinate file for calling coordinate to set up the station. ※1) 	[F1]	SELECT A C.FILE FN:S INPT LIST ENT
(5) Press [F2](Road.Data) to use the defined road for calculation, input the pile to calculate the road data that can be used as the occupied point and backsight point. Press F4 to confirm.	[F2] [F4]	OCC.PT Pile=0.000_ CLR ENT

 Press F1(LEFT) or F2(RIGH) to select if the station is set on the left pile or the right pile, if just set on the middle pile, press F4 to confirm directly 	[F1] or [F2] [F4]	Pile: 55.000 >Middle LEFT RIGH ENT
 After the pile distance entry, press F4 to confirm ※2) 	[F4]	Pile: 55.000 LEFT=7.000_ CLR ENT
⑧ It will calculate the coordinate of the occupied point, press F4 to confirm.	[F4]	Pile: 55.000 N: 30.000m E: 20.000m ENT
ØEnter the backsight point pile and press F4 to confirm.	[F4]	BACKSIGHT Pile=56.000_ CLR ENT

(13) Turn the instrument and aim at the backsight point at face left, press F3 to confirm, it will be back to the previous menu.	[F3]	BACKSIGHT HR: 123°′1618″ >Sight? YES NO
⁽¹⁴⁾ Press ESC to return the previous menu and press F2(Road SetOut).	[ESC] [F2]	Road SetOut F1: OCC.PT# INPUT F2: Road SetOut
(15) Input the required pile and press F4 to confirm	[F4]	Road SetOut Pile=56.000_ CLR ENT
(16)Press F1 (LEFT) or F2(RIGH) to select the left pile or the right pile for setout, if just set out the middle pile, press F4 to confirm directly	[F1] or [F2] [F4]	Pile: 56.000 >Middle LEFT RIGH ENT
(17)After the pile distance entry, press F4 to confirm 2)	[F4]	Pile: 56.000 RIGH=8.000_ CLR ENT

(18) It will calculate the	[F4]	Pile: 56.000 N: 40.000m E: 50.000m
coordinate of the setout point, press F4 to confirm.		ENT
 (19) The calculation result will display: HR: calculated horizontal angle of the setout point, HD: calculated horizontal distance between instrument and the setout point 		CACULATED HR: 123° 20′ 1618″ HD= 25.000_m ANG DIST
 (20) Press F1(ANG). dHR: horizontal angle that should be rotated relative to the setout point= actual horizontal angle-calculated horizontal angle. When dHR is close to 0, it means the setout direction is correct. 	[F1]	PT# : HR: 123° 20' 1618" dHR: 123° 20' 1618" DIST CORD

 (21) Press F1(DIST). dHD : horizontal distance difference relative to the setout point= actual horizontal distance-calculated horizontal distance. dZ : height distance difference relative to the setout point= actual height distance -calculated height distance. 	[F1]	PT# : dHR: 25° 20' 02" dHD: 20.000m dZ: 8.000m DIST MODE ANG NEXT
(22)When dHR, dHD, dZ are all below the permitted errors, point setout is completed. ※3)		PT# : dHR: 0° 00′ 00″ dHD: 0.000m dZ: 0.000m DIST MODE ANG NEXT
(23)Press F3(CORD) to display coordinate.	[F3]	N:22 E:33 Z:55 DIST MODE ANG NEXT
(24) Press F4(NEXT) to enter next road point setout, the pile is automatically increased, repeat previous steps to do next pile setout.	[F4]	Road SetOut Pile=57.000_ CLR ENT

(1)Detailed steps refer to 8.2 Selecting or creating a coordinate data file

 \approx 2) If in the last step directly press F4 to confirm selection of middle pile, no such interface will display.

 \approx 3) In the operation, generally first turn the horizontal circle to make dHR close to 0, then set up prism in this direction, launch distance measure to make dHD and dZ below the permitted errors.

10. Memory Manager Mode

The following items for internal memory are available in this mode.

1) FILE STATUS: Checking the number of files or data in memory.

- 2) SEARCH: Searching and view point of memory.
- 3) FILE MAINTAN: Deleting files /Editing file name
- 4) COORD.INPUT: Inputting coordinate data to memory by keyboard.
- 5) DELETE COORD: Deleting coordinate data from memory.
- 6) PCODE INPUT: Inputting PCODE data into memory by keyboard.
- 7) COMM.PARAM.

SEND DATA: Sending measured data or coordinate data from instrument internal memory to other equipments.

RECEIVE DATA: Uploading measured data or coordinate data to total station internal memory.

COMM PARAMENT: Communication parameters setting

8) INITIALIZE: Initializing internal memory, all the file and data will be cleared.

9) U Function: Enter the connecting interface between ALPHA X and PC by USB port

10.1 Enter Memory Manager Mode

Operating procedure	Operation	Display
①Press the [MENU] key to enter menu mode.	[MENU]	MENU 1/2 ↓ F1:DATA COLLECT F2:LAYOUT F3:MEMORY MGR. F4:PROGRAMS
^② Press the		
[F3](MEMORY MGR.)	[F3]	MEMORY MGR. 1/3 ↓
key to enter memory		F1:FILE STATUS F2:SEARCH
manager mode.		F3:FILE MAINTAN F4:COORD INPUT
Press the $[\blacktriangle]$ or $[\blacktriangledown]$ to		
turn page.		

10.2 Display Internal Memory Status

Operating procedure	Operation	Display
 Make sure the displaying in Memory Manager mode on page1. Press the [F1] (FILE STATUS) key, the total number of stored Measured data files and Coordinate data files are shown. 	[F1]	MEMORY MGR. 1/3 ↓ F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN F4:COORD INPUT FILE STATUS MEAS.FILE : 4 COORD.FILE : 7 MEAS.DATA:000040 COORDDATA:000034 []

10.3 Searching data

MEAS.DATA: Measured data.

COORD.DATA: known coordinate data for layout or station setting PCODE Library: The data which was registered with a number from 0

to 49.

10.3.1 Measured data searching

Operating procedure	Operation	Display
①Make sure the		
displaying mode in		MEMORY MGR. 1/3↓ F1/FILF STATUS
Memory Manager on page		F2:SEARCH F3:FILE MAINTAN
1.		F4:COORD INPUT

②Press the [F2] (SEARCH) key.	[F2]	SEARCH F1: MEAS. DATA F2: COORD. DATA F3: PCODE LIB
③Press the [F1] (MEAS. DATA) key.	[F1] [F1] Input	SELECT A M.FILE FN:1 INPT LIST ENT
④Press the [F1] key to input file name.Press the [F4] key to confirm.	file name [F4]	MEAS. DATA SEARCH F1: FIRST DATA F2: LAST DATA F3: PT# DATA
⑤Press the [F3](PT# DATA) key.※1)	[F3] Input PT# [F4]	PT# DATA SEARCH PT#=_ NUM SPC CLR ENT
 confirm, the point data will display in details. (7) Press the [F4] key to turn page, other information of this 	[1 7]	PT#]1 1/3 N] 3713804.5836m E] 389849.825m Z] 959.514m ↓
point are shown. 2) 23)	[F4]	PT#]1 3/3 PCODE] Ref.Hr] 1.680m EDIT ↓

(1) Press the [F1] key, the first point data will be shown, press the [F2] key, the last point data will be shown.

%2) Press the [▲] or [▼] key to display previous or next point data.

3 Press F1(EDIT) to edit the PT#, PCODE, or target height of this point.

10.3.2 Coordinate Data Searching

Operating procedure	Operation	Display
①Make sure the displaying is in Memory Manager mode on page 1.		MEMORY MGR. 1/3 ↓ F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN F4:COORD INPUT
⁽²⁾ Press the [F2] key.	[F2]	SEARCH F1: MEAS. DATA
③Press the [F2] (COORD.DATA) key.	[F2]	F2: COORD. DATA F3: PCODE LIB
 ④ Press the [F1] key to input file name. Press the [F4] key to confirm. ⑤ Press the [F3] (PT# DATA) key. ※1) ⑥ Press the [F1] key to input PT#, press the [F4] to 	[F1] Input file name [F4] [F3]	SELECT A C.FILE FN: INPT LIST ENT COORDDATA SEARCH F1: FIRST DATA F2: LAST DATA F3: PT# DATA PT# DATA SEARCH PT#=8_
confirm, this point data will display ⑦Press the [F4] key, other points information are shown.※2)	[F1] Input PT# [F4]	INPT SPC CLR ENT PT#J8 1/2 NJ 3725350.730m EJ 602484.036m ZJ 945.646m

※1) Press the [F1] key, the first point data will be shown, press the[F2] key, the last point data will be shown.

*2) Press the $[\blacktriangle]$ or $[\blacktriangledown]$ key to display previous point data or next point data.

10.3.3 PCODE Library Searching

Example searching: Number searching

Operating procedure	Operation	Display
①Make sure the displaying is in Memory Manager mode on page 1.		MEMORY MGR. 1/3 ↓ F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN F4:COORD INPUT
②Press the [F2] key.	[F2]	SEARCH F1: MEAS. DATA F2: COORD. DATA F3: PCODE LIB
③Press the [F3] (PCODE LIB) key.	[F3]	PCODEDATA SEARCH F1: FIRST DATA F2: LAST DATA F3: NO. SEARCH
(4)Press the [F3](NO.SEARCH) key. %1)	[F3]	NO. SEARCH NO.=10_
(5)Enter number. Press the [F4] key to confirm. %2)%3)	[F1] Input number [F4]	> 009 : SYG 010 : AGEO 011 : GPS EDIT CLR

%1) Press the [F1] key ,the first point data will be shown, press the [F2] key, the last point data will be shown.

※2) Press the [▲] or [♥] key to display the previous or next PCODE, press the [F1] key to edit it, and press the [F3] key to delete this PCODE.
※3) Press [F1](Edit) to edit this PCODE.

Press [F3] (CLR) to delete this PCODE.

10.4 File Maintenance

In this menu, the following items are available: Renaming file name, Searching data in a file and Deleting files, special symbols will be shown.

>@AGEO_001		/C0008
*AGEO_002		/C0022
AGEO_003		/M0108
REN	SRCH	DEL

(1) File discrimination mark (*, @).

The mark (* or @) placed ahead file name indicates the file status. For measured data file:

"*"means selected file for recording the measured data For coordinate data file:

"*" means selected file for LAYOUT mode.

"@" means selected coordinate file for DATA COLLECT mode. (2) Data type discrimination character (M, C)

Data type discrimination character (M, C) placed before four figures indicate the type of data.

"M" means measured data

"C" means known coordinate data

(3) Four numbers following "M" or "C" means the recorded point quantity in the file.

(4) This is a PCODE library in the memory. And it can record 50 PCODE in the library; the ID number of PCODE can be set from 01 to 50 freely.

10.4.1 Rename a file

Operating procedure	Operation	Display
①Make sure the displaying is in Memory Manager mode on page 1.		MEMORY MGR. 1/3 ↓ F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN F4:COORD INPUT
②Press the [F3] (FILE MAINTAL) key, the files in memory will be shown.	[F3]	>*1 /M0013 1SV /M0056 REN SRCH DEL
③Press the [F1] key to input the new file name, and press the F4 to confirm.	[F1] Input [F4]	> =AGEO_ /M0013 1SV /M0056 REN SRCH DEL

10.4.2 Deleting a File

Operating procedure	Operation	Display
①In the files displaying		
mode as 10.4.1-2),	[F3]	>AGEO /M0013
Selecting a file by pressing		1SV /M0056
[▼] key or [▲] key, press		>DEL? [NO] [YES]
the [F3](DEL) key to delete.		
0 Confirm the deleting, and		>1SV /M0056
press the [F4] (YES) key.	[F4]	7107 7110050
		REN SRCH DEL

10.4.3	Searching	Data	in	a File
10.1.5	bearening	Dutu	111	u 1 110

Operating procedure	Operation	Display
 ①In the files displaying mode as above procedure 10.4.1-② ②Selecting a file by pressing [♥] key or [▲] key, press the [F2](SRCH) key ③Select searching method by pressing the [F1] to [F3] key.※1) 	[F2]	>1 /M0003 1SV /M0000 REN SRCH DEL >1SV /M0000 REN SRCH DEL >1SV /M0000 REN SRCH DEL SEARCH [1SV] F1: FIRST DATA F2: LAST DATA F3: PT# DATA SEARCH
$\times 1$) The first line displays	file's name	2.

10.5 Coordinate Data Direct Key input

Coordinate data for the layout point or control point can be input directly from keyboard. This data can be stored into a file in internal memory.

Operating procedure	Operation	Display
①Make sure the displaying is in Memory Manager mode on page 1.	[F4]	MEMORY MGR. 1/3 ↓ F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN F4:COORD INPUT
^② Press the [F4] key (COORD INPUT).	[1 +]	SELECT A C.FILE FN: 1SV INPT LIST ENT

$\textcircled{\sc 3} Press$ the [F1] key to	Input	
input File name you want	file	SELECT A C.FILE
to input.	name	IN-AOLO_
Press the [F4] to confirm.	[F4]	ALPH SPC CLR ENT
(4) Press the [F1] [INPT] key		
to input PT#.	[F1]	COORD DATA INPUT
Press the [F4] to confirm.	Input	P1#=1_
⑤Input N coordinate data,	PT#	INPT LIST ENT
press [F4] to confirm and	[F4]	
move to E coordinate		N=0.000 _ m
inputting status. After input	[F1]	Z 0.000m
Z, enter PCODE inputting	Input	INPT ENT
menu	Coord	
⑥ Input PCODE, press	data	COORD DATA INPUT
F4, "complete" will	[F4]	CODE.
display.		INPT LIST ENT
Then next input display is		
shown. Point number (PT#)		COORD DATA INPUT
can increase automatically.		1 177.2
⑦ Press the [ESC] to		INPT LIST ENT
return.		

10.6 Delete a Coordinate Data from a File

Operating procedure	Operation	Display
①Make sure the displaying is in Memory Manager mode on page 1.		MEMORY MGR. 1/3 ↓ F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN F4:COORD INPUT
 ②Press the [▼] key to display page 2. ③Press the [F1] key. (DELETE COORD) 	[▼] [F1]	MEMORY MGR. 2/3↓ F1:DELETE COORD F2:PCODE INPUT F3:COMM. PARAM. F4:INITIALIZE
⁽⁴⁾ Press the [F1] (INPT) key and enter File Name. Press the [F4] key to confirm.	[F1] INPT FILE [F4]	SELECT A C.FILE FN:=AGEO_ INPT LIST ENT
 ⑤Press the [F1] key and enter Point Number (PT#), press [F4] key to confirm. ⑥The instrument will ask you to confirm, press [F3] to delete the selected point, or press [F4] the selected point can not be deleted. 	[F1] INPUT PT# [F4] [F3]	DELETE COORD PT#:=15_ INPT LIST N: 100.000 m E: 100.000 m Z: 100.000 m >DEL? [YES] [NO]

10.7 Editing PCODE Library

PCODE data can be entered into PCODE Library in this menu. A PCODE is linked with a number of 1 to 50. PCODE can be also edited in DATA COLLECT mode.

Operating procedure	Operation	Display		
①Make sure the displaying is in Memory Manager mode on page 1.		MEMORY MGR. 1/3 ↓ F1:FILE STATUS F2:SEARCH F3:FILE MAINTAN F4:COORD INPUT		
②Press the [♥] key once to display page 2.	[♥]	MEMORY MGR. 2/3 ↓ F1:DELETE COORD F2:PCODE INPUT F3:COMM. PARAM. F4:INITIALIZE		
③Press the [F2] (PCODE INPUT) key.	[F2]	>001: 12345678 002: SVYJMPADG EDIT CLR		
④By pressing the [▲] or [▼] keys to move the cursor.		001: 12345678 >002: SVYJMPADG 003: 1234567890 EDIT CLR		
⁽⁵⁾ Press the [F1] (EDIT) key and input PCODE at current position of cursor, press the [F4] key to confirm.	[F1] [F4]	001: 12345678 >002= SVYJMPADG_ 003: 1234567890 ALPH SPC CLR ENT		

10.8 Data Transfer by serial port

Before sending data, please connect instrument and PC correctly with RS-232C cable, and the communication settings of instrument are same as PC's settings.

The data in instrument memory can be downloading to PC, also the data can be uploaded from PC to instrument memory.

10.8.1 Sending data

Example: sending a measured data file.

Operating procedure	Operation	Display
(1) Make sure the displaying is		MEMORY MGR. 2/3 ↓ F1:DELETE COORD
page 2.		F2:PCODE INPUT F3:COMM. PARAM. F4:INITIALIZE
<pre>②Press[F3](COMM.PARA</pre>		
M) key.	[F3]	Data Com
③ Select data format.		F1:GTS
F1: GTS: Normal format	[F1]	F2:SSS
F2: SSS: With code.		
④Press the [F1] (SEND DATA) key.	[F1]	Data Com. F1: SEND DATA F2: RECEIVE DATA F3: COMM PARAMENT
Press [F1] (MEAS.DATA) key.	[F1]	SEND DATA F1: MEAS. DATA F2: COORD.DATA F3: PCODE DATA
⑤Press the [F1] key to input File Name, press the [F4] key	[F1] Input	SELECT A M.FILE
to confirm.	File Data [F4]	ALPH SPC CLR ENT

⁽⁶⁾ After the receiving equipment (PC) is ready, press	[F3]	SEND MEAS. DATA >OK?
the [F3] (YES) to confirm, the		YES NO
sent point quantity will		
display in real-time, press F4		SEND MEAS. DATA
(STOP) to stop data sending.		
		88
		STOP

10.8.2 Loading data

Example: Loading a coordinate data file to ALPHA X memory

Operating procedure	Operation	Display
 Following steps 1 to 3 of "10.8.1 Sending data". Press the [F2] (RECEIVE DATA). 	[F2]	Data Com. F1: SEND DATA F2: RECEIVE DATA F3: COMM PARAMENT
③Press [F1] (COORD.DATA) key.	[F1]	LOAD DATA F1: COORD.DATA F2: PCODE LIB
④Press the [F1] key to input File Name, press the [F4] key to confirm.	[F1] Input File Data [F4]	COORD FILE NAME FN=AGEO_ ALPH SPC CLR ENT
⁽⁵⁾ If the cable connection between ALPHA X and PC is ready, press F3(YES) to confirm.	[F3]	LOAD COORD. DATA >OK? YES NO

⁽⁶⁾ Operate on the PC software,				
begin sending data from PC	LOAI	D DATA Waiting	A Load	
to ALPHA X.		wannig	Loau	
Press F4 (STOP) to stop data				STOP
receiving.				

10.8.3 Setting parameter of data communications Items of the Parameter

		-
Item	Selecting item	Content
F1: Protocol	[ACK/NAK]/[NO]	Setting Protocol
		[ACK/NAK] or [NO]
		communication
F2: Baud rate	1200/2400/4800/	Setting transfer speed
	9600/19200/38400	1200/2400/4800/9600/19200
		/38400 baud rate
F3: Char. /	[7/EVEN]/	Setting data length and parity:
Parity	[7/ODD]/	[7bit, even], [7bit, odd], or
	[8/NON]	[8bit,none]
F1: Stop Bits	1,2	Setting Stop 1 bit or 2bits

10.9 Memory initialize

Delete all the files or clear the whole memory.

Example: Delete all the measured data files

Operating procedure	Operation	Display
 Make sure the displaying is in Memory Manager mode on page 2. Press [F4] (INITIALIZE) 	[F4]	MEMORY MGR. 2/3 ↓ F1:DELETE COORD F2:PCODE INPUT F3:COMM. PARAM. F4:INITIALIZE
key. ③ Select the option you can to clear. MEAS FILES, clear all measured		INITIALIZE F1:MEAS FILES F2:COORD FILES F3:PCODE FILES F4:Format
files COORD FILES, clear all coordinate files PCODE FIELS, clear all PCODEs. Format, the whole memory will be clear. ④Press the [F3] (YES) key,	[F2]	INITIALIZE Delete Coord Files? [YES] [NO]
all coordinate data files will be deleted. It returns to previous menu automatically.	[F3]	INITIALIZE F1:MEAS FILES F2:COORD FILES F3:PCODE FILES F4:Format
Warning: All the deleted files	s and data ca	an not be restored.

10.10 MEMORY SELECT

Choose to make data stored into flash memory or SD card.

Operating procedure	Operation	Display
①Make sure the displaying is in Memory Manager mode on page 3.		MEMORY MGR. 3/3 † F1:MEMORY SELECT F2:U Function F3:DAT DATA CHANGE.
2)Press F1.	[F1]	
		MEMORY SELECT [F1:FLASH] F2:SD
③Press F1 to select flash memory.	[F1]	ENT
④ Press F2 to select SD memory.	[F2]	MEMORY SELECT F1:FLASH [F2:SD] ENT
⑤Press F4 to confirm and it'll be back to the previous menu.	[F4]	MEMORY MGR. 3/3 † F1:MEMORY SELECT F2:U Function F3:DAT DATA CHANGE.

10.11 Connect PC via miniUSB port

ALPHA X is equipped with miniUSB port, you can connect it with PC for data transferring.

Operating procedure	Operation	Display
①Make sure the displaying is in Memory Manager mode on page 3.		MEMORY MGR. 3/3 † F1:MEMORY SELECT F2:U Function F3:DAT DATA CHANGE.
 ②Press [F2] (U Function) key. ③Connect instrument and PC via miniUSB cable, ALPHA X will display "U 	[F2] [F2]	U Function Plug the USB Press ESC exit
FUNCTION Press ESC exit". %1) It means the ALPHA X is		Press ESC exit
connected with PC already. Press [ESC] to disconnect them, and the instrument back to previous menu.	[ESC]	MEMORY MGR. 3/3 † F1:MEMORY SELECT F2:U Function F3:DAT DATA CHANGE.

 \approx 1) After ALPHA X is connecting with PC, the data folder in memory can be seen.

10.12 DAT data change

Convert measurement data or coordinate data into CASS format.

Operation	Display
[F3]	MEMORY MGR. 3/3 † F1:MEMORY SELECT F2:U Function F3:DAT DATA CHANGE
	WS /M0040 S /M0040 ENT
	ENI
[F4]	>AGEO /M0040 WS /M0040 Changing40 ENT
	MEMORY MGR. 3/3 † F1:MEMORY SELECT F2:U Function F3:DAT DATA CHANGE
	Operation [F3] [F4]

11. Instrument Settings

In the parameters menu 1, there are some normal used settings, they are normal used for measurement.

11.1 Items of instrument settings

(* factory setting)

Menu	Optional			Content	
Display					
MIN ANG	1″ /0.2mgc	ngon* Tl		e min angle reading is 1 ″ /0.2mgon	
READING	5″ /1mgon		The	he min angle reading is $5'' / 1$ mgon	
	10″ /2mgo	n	The	e min angle reading is 10" /2mgon	
	10M/30M		Aft	ter 10 or 30 minutes without any	
AUTO OFF			ope	eration, power will auto-off	
	OFF *		aut	o-off isn't active	
TILT	OFF		The	e tilt sensor is OFF	
	ON *		The	e tilt sensor is ON	
	BAUD	120)0*	2400 4800	
	RATE	960	00	19200 38400	
	CHAR.	7/E	V	7 Data length, even parity	
	/PARITY	EN			
		7/C	D	7 Data length, odd parity	
RS-232C		D			
		8/N	10	8 Data length, no parity	
		NE	*		
	STOP	1 *		One stop bit	
	BIT	2		Two stop bit	
	ACK	Sta	nd	Communication way:	
		ard		double-action	
		Omitt		Communication way:	
		ed	*	single-action	
	CR,LF	ON	[With carriage return	
		OF	F*	Without carriage return	
	REC	RE	C-	Measuring and output measured	
	MODE	A*		data	

		REC-	Output displayed data
		В	
	Factory Set		Recall factory setting
Bright	+		Increase the reticle illumination
	-		Decrease the reticle illumination

11.2 Enter setting mode

Operating procedure	Operation	Display
①Make sure the displaying is menu mode on page 2. ②Press the [F2]	[F2]	MENU 2/2 † F1: GRID FACTOR F2:PARAMETERS1 F3:CONTRAST
(PARAMETERS 1) key.		F1: MIN ANG READING F2: AUTO OFF F3: TILT F4: RS-232C

11.3 Setting procedures

Example: change the minimum reading from 1" to 5".

Operating procedure	Operation	Display
①Make sure the displaying is on page 1 of PARAMETERS 1. ②Press the [F1] key the		PARAMETERS 1 1/2↓ F1: MIN ANG READING F2: AUTO OFF F3: TILT F4: RS-232C
current setting will be shown in the"[]".	[F1]	MinANGLE [F1: 1"] F2: 5" F3: 10" ENT
③Press the [F2](5") key, press the [F4] to confirm.	[F2] [F4]	MinANGLE F1: 1" [F2: 5"] F3: 10" ENT

12. Selecting Mode

12.1 Items of selecting mode

The following modes are available

Menu	Items	Selecting	Display
F1:	F1:Temperature	item ℃/°F	Select the unit of
Unit			temperature for atmospheric correction
	F2:Pressure	hPa/mmHg/in Hg/psi/ mbar	Select the unit of air pressure for atmospheric correction
	F3:ANGLE	DMS(360°)/ GON(400G)/ MIL(6400M)	Choose degree, gon or mil unit for measuring angle
	F1:Dist	M/Ft/Ftin	Choose measuring unit for distance meter, feet or feet and inch
	F2:Feet	US_feet/ IN_feet	Select the meter/feet conversion factor US SURVEY feet 1m=3.2808333333333331 INTERNATIONAL feet 1m=3.280839895013123ft
F2: Mode	F1:Power On Mode	Angle/Dist	Select to set the measurement mode for angle or distance when the power is turned on
	F2:Fine/Track/R ap	Fine/Tracking /Rapid	Select Fine/Tracking/Rapid mode in distance measurement mode, when the power is turned on
	F3:HD/SD	HD&VD/SD	Specify which is displayed first, horizontal and vertical distance or slope distance, when the power is turned on

	F1:Z0/H0	VZ0/HA0	Choose the vertical angle reading from zenith or from level
F2: Mode	F1:NTIMES/ REPEAT	N TIMES/ REPEAT	Select the measurement mode for distance when the power is turned on
	F2:MEAS TIMES	0-99	Set N (number of times) for times of distance measurement. When setting number of times as 1, it is single measurement
	F3:NEZ/ENZ	NEZ/ENZ	Select a coordinate displaying order either NEZ or ENZ
	F4:Offset VA	Free /Hold	Select Vertical angle setting in the Angle Offset measurement mode. FREE: Vertical angle varies by the angle of the telescope. HOLD: Vertical angle is fixed even if the angle of the telescope changes.
	F1:ESC MODE	Collect/SO /Rec/OFF	You can select a function of the [ESC] key. DATA COLLECT/ LAYOUT: It is possible to enter data input mode (in DATA COLLECT) or Layout Menu from normal measuring mode directly. REC: While executing normal or offset measuring, the measuring data can be output. OFF: Returns to normal function

F2: Mode	F2:Coor Check	ON/OFF	Select coordinate displaying ON or OFF when setting a point
	F3:EDMOff Time	0-99	The time when EDM is cut off from distance measurement is completed can be changed. This function is effective for shortening time measuring time when distance measurement is started from distance measurement completing state. Default:3minutes) 0 :After completing distance measurement, EDM is cut off immediately. 1-99: EDM is cut off after 1~99 minutes.
	F4:Read Min	0.2mm/1mm	Select 1mm or 0.2mm for the minimum reading unit in the distance mode (FINE mode)
F3: Other	F1:HA Buzzer	ON/OFF	Specify whether the buzzer sounds or not for every horizontal angle 90°
	F2:Signal Buzzer	ON/OFF	Specify whether the buzzer sounds or not in the set audio mode.
	F3:K select	0.14/0.20/OFF	Set correction for refraction and earth curvature, efficient of refraction as ; K=0.14, K=0.20 or no correction

	F1:Coor Rec	ON/OFF	It is possible to retain the
F3:			coordinate of instrument
Other			point, the instrument height
			and prism height after power
			off.
	El·Dec Tupe	PEC A/	Select PEC A or PEC B for
	TT.Ree Type	NEC-A/	Jete entert
		REC-B	data output
			REC-A: The measurement is
			made again and this new
			data is output.
			REC-B: The data being
			displayed is output
	F2:CR,LF	ON/OFF	It is possible to output the
			data with carriage return and
			line feed.
	F3:NEZ Rec	Standard12/	Select to record coordinates
		WithMeas12	in standard or 11 digits with
	E4-InputCoor Po	ON/OFF	In the layout mode or data
	14.inputetoir Re	010/011	collect mode, it is possible to
			record coordinates entered
			directly from the keyboard
	F1:ACK	Standard/Omi	Set the procedure of the
		tted	communication with external
			device.
			SIANDARD: Normal
			OMITTED: Even though the
			[ACK] is omitted from the
			external device, the data is
			sent again
	F2:	Use/Not Use	Select using GRID FACTOR
	GRID FACTOR		in calculation of
	end merok		measurement data

F3: Other	F3:Staking Mode	Standard/Cut &Fill	In the layout mode, CUT & FILL can be displayed instead of dZ
	F3:Back Disp	ON/OFF	It is possible to output the data of echo back type
	F1:Contrast menu	ON/OFF	When the instrument is turned ON, it is possible to display the screen which you can adjust contrast of the display and confirm the prism constant (PSM) and atmospheric correction value (PPM)
	F2:LANGUAGE	ENGLISH/ OTHER	Select the displaying language.
	F3:Key Buzzer	ON/OFF	Setting the key pressing buzzer ON/OFF

12.2 How to set selecting mode <Example>: Setting unit in °F, NEZ MEMORY:ON

Operating procedure	Operation	Display
① While pressing F2 key, turn Power ON	F2 + Power on	PARAMETERS 2 F1:UNIT F2:Mode F3:Other
⁽²⁾ Press the [F1] key to check and set all units.	[F1]	Unit 1/2↓ F1: Temperature F2: Pressure F3:Angle
③Press [F1](Temperature) key press $[F2](°F)$ and	[F1] [F2]	Temp. Unit [°C]
press[F4](ENTER) key.	[F4]	°C °F ENT
Operating procedure	Operation	Display
---	-----------	--
④Press [ESC] key. Returns to PARAMETERS 2 menu.	[ESC]	PARAMENT 2 F1:UNIT F2:Mode F3:Other
⑤ Press [F3] (OTHER) key.	[F3]	Other 1/4↓ F1:HA Buzzer F2:Signal Buzzer F3:K Select F4:Coor Rec
[®] Press [F4](Coor Rec) key.	[F1]	Coor Rec [F1: ON] F2: OFF
⑦Press [F1](ON) key, and		ENT
press [F4] (ENTER) key.	[F1]	
Returns to OTHERS SET menu.	[ENT]	Other 1/4↓ F1:HA Buzzer F2:Signal Buzzer F3:K Select F4:Coor Rec

13. Check and adjustment

13.1 Checking and adjusting of instrument constant

Instrument constant means additive constant for distance measurement. Normally, the instrument constant doesn't have error. It is recommended you measure and compare with an accurately measured baseline one consistent ground. If such a baseline is not available, establish your own base line over 20m and compare the data measured with the newly purchased instrument.

In case, the instrument setup, the prism, baseline precision, poor collimation, atmospheric correction, correction for refraction and earth curvature determine the inspection precision.

Also, when providing a base line indoor, the following procedure as shown below could be used to check the instrument constant.

(1) Provide point B on a straight line AC, which is almost level and about 100m long. Measure straight lines AB, AC and BC.

(2) Obtain the instrument constant by repeat measurement,

Instrument constant =AB+BC-AC

(3) When there is error between written instrument constant value and calculated value, only need to synthesize the instrument constant and prism constant, and then input the synthesized data in prism constant form, please refer to "7.3.1 Setting of the prism constant".

(4) Once again, measure at a calibrated baseline and compare results.(5) If using above procedure a difference of over 5mm is found, the instrument constant need reset as the operating procedure on next page.

Operating procedure	Operation	Display		
①Press the [F1] key and	[F1]+	PASSWORD		
power [①] key at the same	[①]			
time to enter service menu.		INPT ENT		
⁽²⁾ Press the [F1] key, and	[F1]	ADJUSTMENT MODE		
input the password 1120,	[1120]	F1: V INDEX ADJ.		
press the [F4] key to confirm.	[F4]	F2: INST. CONST F3: SET DEFAULT!!		
^③ Press the [F2] key.	[F2]	INST. CONST SET CONST: 000mm		
④Press the [F1] key.	[F1]	INPT ENT INST. CONST SET		
⑤Press the [F1] key to input	[F1]	CONST: 0002_ mm		
new constant, press the [F4] to	input	CLR ENT		
confirm.	constant [F4]	INST. CONST SET CONST:0008 mm SET?		
⁶ Press the [F3] (YES) key.	[F3]	YES NO		
Press any key, the instrument finish setting and power off automatically. $%1$)	Any key	INST. CONST SET CONST:0008 mm SET? Waiting [NO]		
		Save Ok!		
%1) Press the [F4](NO) key to cancel the setting.				

13.2 Checking/adjusting the plate level

(1) Set the instrument on stable device (such as tripod or adjusting table) and fix it.

(2) Level the instrument roughly, place the plate level parallel to a join-line of two leveling screws, say, A and B. Use these two leveling screws only and place the bubble in the center of the plate level.

(3) Rotate the instrument 180° and check bubble movement of the plate level. If the bubble has always been in the center of the plate level, then it is not needed to adjust. If the bubble has been displaced (deviate the center away half of one grid), then adjust it.

Adjustment

(1) Set the instrument on stable device and fix it.

(2) Level the instrument roughly.

(3) Place the plate level parallel to a join-line of two leveling screws. Use these two leveling screws only and place the bubble in the center of the plate level.

(4) Rotate the instrument 180°. When the bubble stable, adjust the level adjustment screw with the adjusting pin and return the bubble towards the center of the plate level. Correct only one-half of the displacement by this method.

(5) Repeat the procedures of (3) and (4) until anywhere the instrument moves to, the bubble will always be in the center of the plate level.

13.3 Checking/adjusting the circular level Check

(1)Set the instrument on stable device and fix it;

(2)Precisely level the instrument with the plate level;

(3)Look the bubble of the circular level whether is in the center; if the bubble is centered properly, adjustment is not required. Otherwise, adjust it.

Adjustment

(1)Set the instrument on stable device and fix it;

(2)Precisely level the instrument with the plate level;

(3)Shift the bubble to the center of the circular level, by adjusting two adjustment screws with the adjusting pin.

NOTE: When adjust with pin, you should do that with smaller strength, the loose-tight degree of two screws should be similar.

13.4 Checking/adjusting the optical sight Check

- (1) Set the instrument on stable device and fix it;
- (2) Set a cross mark front the instrument 50m apart;
- (3) Let the telescope collimate the cross mark;
- (4) Observe the optional sight collimator whether collimating the cross mark, if collimates the mark, adjusting is not required. Otherwise, adjust it.

Adjustment

- Set the instrument on stable device and fix it;
- (2) Set a cross mark front the instrument 50m apart;
- (3) Let the telescope collimate the cross mark;
- (4) Loose two fixed screws of optional sight and adjust them, when the optional sight on proper place fix the two fixed screws.

13.5 Checking/Adjusting the plummet13.5.1 Checking/Adjusting the optical plummet Check

(1) Set the instrument on stable device and fix it.

(2) Set a cross mark under the instrument.

(3) Use the three leveling screws and coincide the center mark of plummet and cross mark on the ground.

(4) Rotate the instrument 180° around and check the center mark and cross mark, if they are coincide, adjustment is not required. Otherwise, adjust it.

Adjustment

(1) Set the instrument on stable device and fix it.

(2) Set a cross mark under the instrument.

(3) Use the three leveling screws and coincide the center mark of plummet and cross mark on the ground.

(4) Rotate the instrument 180° around and take off the cover of the optical plummet eyepiece, adjust the four adjusting screws with the adjusting pin to shift the center mark to the cross mark, correct only one-half of the displacement in this manner.

(5) Repeat the operation in (3) and (4) until coincide the center mark of the plummet and cross mark on the ground.

13.5.2 Checking/Adjusting the laser plummet (Optional accessory) Check

(1) Set the instrument on stable device and fixes it;

(2) Set a cross mark on the ground under the instrument;

(3) Turn the three leveling screws until the instrument keeps leveling and the laser spot coincides with the cross mark on the ground;

(4) Rotate the instrument $180^{\circ}(200\text{g})$ around and check the laser spot and cross mark, if they are coincide, adjustment is not required. Otherwise, adjust it.

Adjustment

(1) Set the instrument on stable device and fixes it;

(2) Set a cross mark on the ground under the instrument;

(3) Turn the three leveling screws until the instrument keeps leveling and the laser spot coincides with the cross mark on the ground;

(4) Rotate the instrument 180°(200g) around and take off the protecting cover of the laser plummet, adjust the four adjusting screws with the screwdriver to move the laser spot to the cross mark, correct only one-half of the displacement in this manner.

(5) Repeat the operation in (3) and (4) until the instrument keeps leveling and the laser spot coincides with the cross mark when rotating alidade of instrument to any direction.

13.6 Checking/Adjusting the vertical cross-hair on telescope

(1) Set the instrument up the tripod and carefully level it.

(2) Set a point A fronts the instrument 50m apart;
(3) Collimate the point A and adjust the vertical tangent screw; if the point appears to move continuously on the hair, adjustment is not required. Otherwise, adjust it.

(1) Set the instrument, and set the point A front the instrument 50m apart.

(2) Take off cover of telescope eyepiece, rotate

the vertical tangent screw and loosen all four adjusting screws slightly with the cross screw-drive, then revolve the eyepiece section so that the vertical cross-hair coincide to point A, finally, re-tighten the four screws.

(3) Repeat the operation in check (3) and adjusting (2) until there is no deviation.

13.7 Checking/adjusting horizontal collimation error Check Check

(1) Set-up the instrument on tripod or adjustment platform and leveling accurately;

(2) Aim at the cross-hairs of collimator or the obvious target at a distance. Get the face left angle reading H1 and the face right angle reading Hr.

(3) Calculating the horizontal collimation error C according to C= $(Hl-Hr\pm 180^{\circ})/2$ if C<8", no adjustment will be necessary. If C>8", proceed with the following adjustment.

Adjustment

(1) Rotate the instrument in face right position, turning horizontal tangent screw until Hr' = Hr+C.

(2) Loosen the shield of telescope's reticule adjusting two screws at left and at right until the vertical hairs of telescope's reticule coincides with the cross-hairs of collimator or target.

(3) Repeat the check and adjustment procedure until it is up to standard.

13.8 Checking/adjusting of the vertical index error i.

Finish the adjustment of the across-hair and the error 2C, and then begin this adjustment.

Finish the adjustment of the across-hair and the error 2C, and then begin this adjustment.

Check

(1) Set-up the instrument on tripod or adjustment platform and leveling accurately.

(2) Aim at the cross-hairs of collimator or the obvious target at a distance, which should be about $\pm 10^{\circ}$ away from the horizon. Read the face left angle reading VI and the face right angle reading Vr.

(3) Calculating the vertical index error i= (VI+Vr-360°) /2.

(4) If i<10", adjustment is not required. Otherwise, adjust it.

Adjustment

If the vertical index I is too bigger, using program to adjust.

Operating procedure	Operation	Display
①Press the [F1] key and	[F1]+[1]	
[1] power key at same		PASSWORD:
time. %1)		
		INPT ENT
⁽²⁾ Press the [F1] key to input	[F1]	ADJUSTMENT MODE
the password 1120, press [F4]	[1120]	F1: V INDEX ADJ.
key to confirm.	[F4]	F2: INST. CONST
		F3: SET DEFAULT!!
③Press the [F1] key.	[F1]	V INDEX ADJ. <step-1> FACE 1 VZ: 95° 22′ 04″ ENT</step-1>
④Rotate the telescope about	Initialization	
one circle.		V INDEX ADJ.
		VZ: 275° 40′ 04″
⑤At face-left collimate the	[F4]	ENT
reticule of collimator, press the	collimate	
[F4] key to confirm. (2) (3)	(Left)	VINDEX ADJ. VI: -5° 22′ 04″
		SET?
		YES NO
⁽⁶⁾ At face-right collimates the	[F4]	
reticule of collimator, press the	collimate	VI: -5° 22′ 04″
[F4] key to confirm.	(Right)	SET?
		Waiting

⑦Press the [F4] key to confirm.	[F4]	V INDEX ADJ. Vl: -5° 22′ 04″ SET? Save OK!
[®] Press the [F3](YES)	[F3]	
key. %4)		
⁽⁹⁾ Press any key, the	Any key	
instrument finish the setting		
and power off automatically.		

※1) Before adjusting the error, set the instrument on tripod or adjustment platform and fix it with column screw, leveling it accurately and open the compensator.
※2) The collimator or target will not apart away from horizontal line ±10°
※3) Collimate the target at normal position firstly, and then collimate the target at reverse position, users must operate the instrument according to the displaying

information.%4) Press the [F3] key to cancel the setting, and power off automatically.

13.9 Checking the optical axis

Finish the adjustment of the cross-hairs and the error 2C, then check the coincide of the sight-axis and EDM-axis.

Check

(1) Set-up a prism at a distance, which should be about 100m away from the instrument.

(2) Set-up the instrument on tripod or adjustment platform and leveling accurately, then switch on.

(3) Collimate the center of the prism, measure distance in the way which be introduced in chapter 7.

(4) If the receiving is well, the buzzer will sound immediately and the measuring result will display in short time, then the adjustment is not requirement.

Adjustment

If the case is different with introduction in (4), please contact with our local dealer.

This check should be do in fine atmospheric conditions

14. Packing list

•Carrying case	1each
●Instrument	1each
•Battery	2 each
•Charger	1 each
•Tool kit	1each
•Instruction manual	1each
•Disc	1 each
•Communication cable	1 each
•Reflective sheet	2 each

Attachment 1: atmospheric correction formula and chart (for your reference)

Factory setting: temperature: 20°C, pressure:1013hPa, 0ppm The correction:

 $Kpt = 274.417 \cdot 0.2905 \cdot p/(1 + 0.0036 \cdot t)$

```
Kpt = 278.960 - 0.2904 * p/(1 + 0.0036 * t)
```

Where: p--Pressure value (hPa)

```
t--Temperature value ( °C)
```

```
Kpt--Atmospheric correction (ppm)
```

Example:

t=15°C, p=1013hpa, L0=1000m.

Then: Kpt=0ppm

L=L0(1+Kpt)=1000×(1+0×10⁻⁶)=1000.000m

The atmospheric value is obtained easily with the atmospheric correction chart. Find the measured temperature in horizontal axis, and pressure in vertical axis on the chart.

Read the value from the diagonal line, which is the required atmospheric correction value.

Pressure (hPa)

Elevation (m)

Temperature (°C)

149

Attachment 2 Correction for refraction and earth curvature

Horizontal distance and vertical distance calculation formula: with correction for refraction and earth curvature taken into account:

Horizontal distance: D=AC (α) or BE (β)

Vertical distance: Z=BC (α) or EA (β)

 $D=L\{cosa-(2\theta-\gamma) sina\}$

 $Z=L{sina+(\theta-\gamma)cosa}$

 θ =L*cosa/2REarth curvature correcting item

 $\gamma = K*L\cos\alpha/2R$ Atmospheric refraction correcting item

K=0.14 or 0.20Coefficient of refraction

R=6372kmRadius of earth

 $\alpha \ (or\beta) \Altitude \ angle \ \ L \Slope \ distance$

The conversion formula for horizontal and vertical distance is as follows when correction for refraction and earth curvature is not applied: HD=L $COS\alpha$ VD=L SIN α

Attached file 3: communication instruction and data format

1) Communication parameters setting

BAUD RATE (Baud rate): 2400/4800/9600/19200/38400

PARITY (Parity mode)NONE/ODD/EVEN

DATA BITS (Data length): 7/8

STOP BITS (Stop bit): 0/1/2

PROTOCOL(Protocol): XON/XOFF, NONE

2) Data format

Uploading coordinate data format

C1 C2 C3 ... Cn CR LF

C1-Cn:

PT#,X,Y,Z,PCODE

NOTE: there is no blank after comma

Example:

```
101,994.815,1000,987,100.113,STN
```

CR(ODH) and LF(OAH) at the ending of data block, means the ending

mark of data block

Downloading data format:

CONTROL WORD field1 fieldn

CONTROL WORD, with blank to finish

field1 to fieldn-1 with comma to finish fieldn with CR(ODH) and LF(OAH) to finish

Control code and attached information:

JOB Job name, description

NAME Surveyor name

INST Description of instrument model

UNITS meter/feet, degree/gon

SCALE Grid factor, scale factor, elevation

ATMOS Temperature, pressure

STN PT#, instrument height, PCODE

XYZ X (N coordinate), Y(E coordinate), Z(elevation)

BKB PT#, azimuth of backsight point, angle of backsight point

BS PT#[. target height]

FS PT# target height, PCODE[, serial code]

SS PT# target height, PCODE[, serial code]

CTL control code[, point code 2[, serial code2](Select one optionally)

HV HA (Horizontal angle), VA(vertical angle)

SD HA (Horizontal angle), VA(Vertical angle), SD(Slope distance)

HD HA (Horizontal angle), HD(Horizontal distance), VD(height difference)

OFFSET Radial offset, tangent offset, vertical offset

PTL_OFF offset on the reference line direction, offset on the line which is cross at right angles with reference line NOTE Note content

NOTE:

These designs, figures and specifications are subject to change without notice. We shall not be held liable for damages resulting from errors in this instruction manual.

GUANGZHOU ALPHA GEO-INFO CO.LTD

Https://alphageo-info.com Mail:alphageo@aliyun.com Address: Building No.1, Gaopu Road No.68,Tianhe District, Guangzhou510630,Guangdong,China

